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PREFACE

The remarkable growth of applications of matrix theory is well
known. Although other branches of higher mathematics muy be
applied more intensively and perhaps by more people, few branches
have been applied to so many diversified fields as has the thegry of
matrices. Iiducation, psychology, chemistry, physics ; pleetrieal,
mechanical, and aeronautical engineering; s&.‘iﬂﬁl«sﬂ‘ff and economics —
all arc enriched by this theory. Within mathematics tsélf the ap- -
plications of matrices to other mathematical disciplines art wide-
spread, \@

These facts are reflected in the compositigyand magritude of
university classes in matrices. The student&}p:ecializing in mathe-
matics are sometimes outnumbered as Migh as ten to one. Such
conditions present a teaching problemihasmuch as students from
*“foreign fields” rarely have adequat@maturity for advanced mathe- E

»

matical reasoning,

For a subject so much in deiand, the texts on matrices are sur-
prisingly few. Of the text{“published in this couniry within the
last decade or two somg'ba-ve approached the teaching problem
cited above by the pl\be’s's of excision. Much of the meat of the
subject is cut awayN\and a skeleton is exposed. This fare, well
seasoned with nupieical work, is ther offered as the sole diet. Other
texts use a me hotl of concentration. The theory is carried almost
no further thanthe subject of inverses or in some cases the Cayley-
Hamiltop(bhzbrem, and then attention is concentrated on a specialized
field of @pplication such as electrical notworks,

Althpugh both of these approaches have obvious value and fill a
neéed) 1 feel that still another is sorely needed. My planning of this
book has been guided by several observations. First, the difficulties
which confront students of engineering, psychology, chemistry, and
other subjects, when they take a course in matrix theory are often
not so much the result of deficient knowledge of the subject matter
of earlier courses as of a lack of mathematical maturity. In very
little of their experience have definition, theorem, and proof played
50 prominent a role. The second observation influencing me is that
students from “foreign fields’ are generally no less intelligent than

yo
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those who specialize in mathematics (although some woull Ly E'h:':\-'
are less fortunate!). Third, I feel that cven if (he HltI!l(‘Illl i pri-
marily conecerned with applications to a narrow Technien] .IHI.M' st
cessful employment of this subjeet depends uliimately on faeing qnid
mastering the main ideas.
In relation to this third point we may consider the current intere-1.
w efficient methods for inverting matrices of Lorge order. An i
structor might easily be tempted to devote a lurge portiondW
beginning course to this topic, but there are ronsons for gt i
such a temptation with disfavor. In the first pluce, I‘c.\lv\:i’;-:-h D
ganizations will usually present the new employee \\'iil}’ iandboos
"6ut-lining the methods of inversion they are using, LM (he seenn|
place, the methods themselves are undergoing clﬁQddlmwnl, =u thi
- any method learned in class would very likdgDe subject 1o rapicl
obsolescence,  There is certainly no ul:jer.kinm to an advaneed or
second course devoted to current techniqp@d) hut the beginner wonld
do much better to devote his time ta*gie basic ideas.  Thix, Ly
tate, is one of the personal viewpoints shich have guided my writing.
With those ideas in mind I haﬂté planned a book which offcrs o
more than ample diet for mathiematics majors taking o first conrrace
of one serester in the theory@bmatrices. I have attempted 1o nuhe
this diet palatable to studénts with meager backgrounds by exercising
great care and pat-ier}gta:hl wriling proofs, discussions, and examples
to llustrate duﬁnit'\l)néi ‘and theorems,  This coddling, however, ix
supplemented byMactivities leading the student to stand on his own
feet. Theve,i§”a generous supply of exercises including tdeagriate
amounts o Auherical work, but bearing heavily on simple theoretiend
cuestionsy “Oeeasional querics ure inserted in the text PrOper tiy
focugdbtention on a fine point or to stimulate review of earlier
topies: Where parallel theories veeur, one 18 worked out in detuil
\ami the other merely outlmed, details of proof being left for (he
\ptudent to work out and perhaps to present as a classroom report.
In all these ways the student, gains familiarit

he ¥y with the sienificance
of definitions and theorems, and gains confidence in himself.

The main theme of the book is the establishment of the well-
known canonical forms, Runk, nonsingularity, and inverses are
introduced in connection with the development of canonieal mat rices
under the relation of equivalence, and without the interve
of determinants. Congruence and Hermitian o
next major topics, Among the several methods of

niion
ongrucnee are the
treating similurity,
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I have chosen one which seems to me to promote the maximum
enlightenment for the student. In Chapter 9 characteristic vectors
and roots lead to the various diagonalization theories, culminating
in the study of normal matrices,

If brevity were a consideration of overriding urgency, parallel
theories would in some instances have been treated simultaneously,
notably in the theories relating to Hermitinn and real, symmetrie
matrices. I make no apology for separating the cases. The studént
gains much by seeing that simple ideas can with snitable medifica-
tions be extended to further cases, and by fashioning his qvm\f)roofs
from the models presented in the simplor cases. This type bf presen- .
tation iz particularly featured in Chapter 9, where thegubject matter
of diagonalization progresses from real, symmetfié “matrices, 1o
Iermitian matrices, thence to normal matrices,

Certain exercises throughout the book are {L'@tinguished by a star.
Contrary to common usage, this designatiofHoes not indicate that
the problem is difficult. Starred probiéms are those to which a
reference is made later in the book, dxPwhich state a property of
general interest.  The student sho@ill at least read every starved
exereise, N\

Numerous supplementary tepies are treated in appendixes loeated
at the ends of various chagters. Thus they are available pear the
point at which they bqgt}ﬁxe relevant buf are not intrusions upon
the ovderly developmér(t\ of the main theorems.

The arrangementof chapters lends itself well to a varicty of
courses, For an éieﬁ:mntary course in which consgiderable class time
is devoted to px:g)blem solving, the first five chapters will suffice.  The
same stud%m:C-ould cover substantially all of the book in a onc-year
course, For students with a better background, experience has.
shown.f’d’mt the first eight chapters can be covered successfully in a
somg»it‘r course of about fifty lecturcs. If, further, a knowledge of
ddtminants and polynomials as presented in Chapters 4 and 6 is a
prerequisite for the course, omission of these chapters will then per-
mit covering in one scmester most of the material o the end of
Chapter 9.

Lafayette, Indiana Sam Peruis
April, 1952
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CHAPTER 1
INTRODUCTORY CONCEPTS

1-1 Simultaneous linear equations. If we consider a system of
linear equations, such as ~

264+38y— z=1, A
M ~10x — 2y + bz =35, - ,~<\"\

it is soon apparent that all investigations of the systemmay be carried
out, perhaps with greater efficiency, by working 0111%' with the array
of coefficients and the array of constant terms;

@ o Le 2 H [@

Although the exploration of this idea i As, deferred until Chapter 3, we
have at once the concept of a rec;angular array of numbers, The
first array in (2) has two rows anel three columns; the second has
two rows and one eolumn, [ O9
Any rectangular array of“niim'bers is called a matriz or a rectangular
mairiz, and if the array(has n rows and s columns it is ealled an
%X s (read “n by §'9'\niatrix. Two matrices are equal if they are
preciscly the same,arrays (though they may differ notationally, just
as 2 differs from) xx) A eonvenient notation for a general n X s
matrix is foqu ' the use of double subseripts:
AV dn Gz ... O
s\ [27V I ¢ S # /'8

N t3) NS . . .
228] a_nz e Gas /

The s numbers at the top of this array constitute the first row of the
matrix. The rows of a matrix are numbered from the top dow n,
and_the columns from left to r1ght so that the first buchupt on a:
quantity a:; indicates the row in which it belongs,. and the secnnd
subseript indicates the column. The quantities a; are called the

guontities or elements or coordinaies or eniries of the matrix. Some-
A .




-/ 1-2 Substitutlo

‘ letters by; denote constants,

Q;ah" a system of equations can sometim

2 ' INTRODUCTORY CONCEPTS [cirap. 1

times we tefer t0 ai; as the element in the (1,7) place. 1 the dimen-

_sions » and s of the matrix (3) are kept in mind, it suffices to e the

brief notation (g in place of (3). Vartous symbols of enclosre
are in common use:

(as), [@sdly gl

We shall generally use parentheses for mat rices having only ane vow,

- and brackets for all other matrices. Moreover, it is common To weile

A = (a:) and use the single letter A to denote a mat rix (3

One may be tempted to place the symbols 2, y, and 7 abuove the

appropriate cohmnns in (2) as reminders of the system (. rhe
" . 3 ] - N
matrix notation requires, as we shall sec in the next seetion, PhugSh

write these ““reminders” in the following wuy: O

g W

AN
< 3

x
2 3 -1 7
5 , X,
@ [-10 -2 J o [,] N

* Regardless of where the labels z, y, and 2 avesplaeed, the left side

of the first equation in {1) may be reconstrucked from the first row

of the 2 X 3 matrix in (2) by multiplying eadhof the clements 2,3, -1

in this row by «, ¥, and 2, respectively, then adding:
| 2 + 3y w3 1)z
_S]mﬂagly the left side of the setond equation is obtained from the
:icoliz ﬁ;)w of the 2 X 3 mateix'in (2) by multiplying the —10 by .
th?s . ¥ Y, the_.5_ by 2, aud adding. In terms of the notation (1),
i Lrl‘ggest‘s a Iflnd of -by-~column multiplication.  This sugges-
fon will arise Wlth‘ greater force in the next section.
NS
ns and matrix multiplicati sider
! ] sy{é’ﬁz‘like iy plication. Let us consider a
R . , .

SRR\ = a4y + 0,

¢ : b= ant + ouy + ane.

a Substitution, say, es be simplified by means of
z = bt b sl
6 12%,
( ) .y=b21u+bn‘t},
2 = bant + by,

Here the le
¢ letters ¢ and v denpte new unknowns or variables, and the
After the substitution is made, the



1-2] SUBSTITUTIONS AND MATRIX MULTIPLICATION 3

system appears as -
h = ent + ey,
Z‘z = Catl + Coalt,
where the 2 X 2 matrix of coefficients ¢ = (¢;;) is

%) [&11b11 + ta2bo - arshs  aubye + @b + Ehsbn] .
anbyy + amboy + Gusbar  Gabia + azbee + dusbu

For discussion purposes, let A and B denote the cocfficient matriees
in (5) and (6): .

7 A
by b 7% N
A= [all Gz G5l B iy by | O\
: [ ) W& ™
Then the element ) A '

€11 = Gubn -+ by + 13by

in C has been obtained from 4 and B by “qmﬁiﬁlying”-the first row
of A by the first column of B, that is, thefirst row of 4 and the first
column of B each have first elements (@yw*and by), second clements
(@12 and by), and third elements (aysnd bs) ; each pair is multiplied
and the results are added. Thisigives the formula above for en.
In similar fashion, ¢ is -ebt-sg,iﬁéd by multiplying row ¢ of 4. by
column % of B in the manngx just deseribed. _

This illustration sug,geet’x the following definition, et A = (a;;)
be an n X s matrix Fk JB — (biz) be an ¢ X { matrix. Then the
product AB is defmedx the matrix '

¥

\: = (cik); Cip == Ea'u :k

The WJQOHI of this definition is borne out if we generalize the illus-
tratiohabove. Instead of (5) consider a system of n linear equations
inglunknowns i, . . ., &,

7

(8) . b= Z 825, (i=1,...,n)
. =

This compact notation for a system of n equations in. s unknowns
displays clearly its # X 8 coefficient matrix 4 = (a,;). Suppose that
in (8) we wish to make the subetltutnon '

(9 zbgkyk (_j=1, v, 8)
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with coefficient matrix B = (b;). The result is the system

_ i ¢
) e S0 3 ),
i=1 k=1

or
1 &
(11) L= 2 aubu )ys
E=1\j=1 ,
N\
whereineachcase i=1,..., n.

The passage from (10) to (11) is described as a change in the ‘wriler
of summation, We sum first for k in (10), but first for j in {013, 1f
- we accept for the moment the validity of this change £8e¢” Scction
1-11 for proof) we conclude that the result (11) of bhé' substitution
s a system of n linear equations in # unknowns ¢ . , y. with co-
efficient matrix
A ‘.\\:
C= (ea), e = 2 a;,Qi;é;
=)

According to the definition above, (' R AB. We have proved

THEOREM '1—1. If a system of"ii}:z,éar equations (8) with coefficient
matriz A is subjected fo a substitution (9) with cocfficient matriz B,
the resulling system (11) inenew unknowns has coefficient matric AB.

Let X and L denote @hé}x 1 and 7 X 1 matrices
\\ €Iy Ilﬂ
(12) NV X=1.| L=
' \
The]fl’t?e stem (8) may be written very compactly by use of matrices:
Q?ﬁ)f.’ ' - AX = L.
ﬁ‘lﬁs formulg (13) makes the s
linear equation in one unkno B, az = 6. One of our goals is to de-
velop an algebra for matrices which will permit the solution of the

system (13} by methods analogous to, and theoretically as simple as,

the sclution of az = b, Tq avoid i i
: ) space-co s lik )
we introduce the notation i ewing displays like w2

L I,

X =col(zm,...,2),
Lsca,...,1)

ystem (8) appear as simple as a singlo -

el
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for the one-columned matrices (12). Commas are usually used to
separate the elements of & matrix having only one row; otherwise there
is danger of confusion with an ordinary product of numbers.

The reader must bear in mind two points concerning matrix prod=-
ucts AB. If 4 is n X r and B is s X ¢, the product AB is defined
only when r = s; the product AB js undefined when, for example,
4 is 2% 3 and B is 5% 2. The second point is that when 4 is
# % & and B iz s X ¢, the produet AB is n X {: the number of rows }
AB is the number of rows in 4 (the left factor), and the numbexr 0$ \
columns in AB is the number of ¢olumns in B. : O\

A matrix is said to be square i its number of rows is equal to its
number of eolumns. This number is sometimes called..the order of
the matrix, a3

\.
) Exercises v \
1. Given the mafrices

1 2.3 3 ,:;fi\'o
A=|:0 -1 1) B=|:1",\—1 2 |
2 3 o0d. £ 2 1

verify the following produets: A3

5 5 I3y 3 5 10
AB=|—-1 3 &b|) BA=|5 9 2|
9 —In 6 21 2

2. In the first system of iet}‘\ations below make the substitution given by
the second system of an\&tlonq (1) by direct substitution and (b} by use of
nuatrices:

7p2e + 3y = 1, T = Zu— 3
{x—i—2y=5, {y=—u+2v.
{c) Solve thenéw system of equations for w and », and thug find the values
of z and y.gatisfying the original system.,
3. Gi\fén he matrices

A o2 T3 0 B 71
of A—|:3 4] - [ Lo - 3)?._9_[_1],_!
caleulate the products AB BA CD, DC AD CA. -

1—3 Transpose and assomaﬁwty. Quadratlc as well as linear poly-
nomials may sometimes be associated with matrices. For cxample,
consider

i@, y) = 32° + 4oy — 3
= 3a? + 20y + 2yx - 3
= z{8z + 2y) -+ y(2xr — y).
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Now f(z, y) may be regarded asa 1 X 1 matrix which is equal to the
y

matrix product

3z + 21
o = @[ T2,

s s =@y )

This subject will be treated carefully in Chapter 5. For the moment
(14) will be used to introduce several topics. .

The matrix col (z, ¥) appears in (14} together with (2, y). ,Liach
of these two is called the transpose of the other. More geng:mllj,‘, if
A = (a;) is an n X s matrix, its transpose is defined z%s.}i;llc s n
matrix >

N\

B = (byy), bii=ay '"‘~\\

for all £ and j. We may think of constructing Byfrom A, column by
column, by rotating the first row of A and ugingit as the first column
of B, the second row as the second column‘,’}nd 50 on.

The only elements of A that do not Change positions during this
process are those whose row and colimin subscripts are equal: ay,
ga, .... These elements constiftbe the diagonal of A, and indi-
vidually are called diagonal elemignis of A.

The transpose of a matrix¥ will be denoted by the symbal A’

RN
~THEOREM 1-2. Tﬁe'\ﬁ:a%spose of a product AB is the product of
the transposes in *rev}\se order: (AB)Y = B'A’.

Tet A = (a;;)}ié:ﬁ X g and B = {b;;) be s X {, so that the clement
in the (7,k) plaee’(ith row and kth column) of AB is
:~\l.

(15) \'% di = Eaiibﬂc-
) i=1

',]:111913 the element in the (%,i) place of (AB)'. The element in the
() place of B'A’ is the product of the kth row of B’ by the itk
column of A”.  But these are (by, by, . . ., bu) and col (i, @, . .
@), and their product is (13).
The wording of this theorem suggests that if PQ is a matrix produet

5%1; that @P also is defined, these two products may differ, This

ifin fact the case; it is comparatively rare to have PQ=QP. For
exdmple,

SN RS R |

00
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In elementary algebra the property that ab = ba for all choices of a
and b iz known as the commutative law. As a law, commutativity
fails to be true for matrix multiplieation. Ifor special pairs P and @,
however, it may be true that PQ = QP, and when this is true we
say that P commules with Q. '

One other izssue arises from (14) by virtue of the fact that it is a
produet of three matrices, With ordinary numbers a triple product
(ab)e may ba fomputed also as a(be). The equality between thege:
products is known as the associalive low.

Ko N
TrroreM 1-3. Mabriz muliiplication is associative: NN ©
P(QR) = (PQ)R.
The proof is a dircet computation, Let \ Y

= (pig), @=1(q), B~= (?“u)
2o that the element in the (i,k) place in PQ‘ } (dm) is

i = z‘p\e:lg:h ‘

and in the (7,0} place of (PQ)R 19'

. {16) 2 dimz - 22 Paititl e

“,\
The clement in the (%Q‘gﬁawo of P{QGR) may be computed similarly.
Tirst, the (7,0 place o R is occupied by the element

£ ‘1\ ’3 G = E G iire,
:O\ N/ ?
ﬂhonce rlx(»(‘lement in the (2,0) place of P(QR) is

\ :' 2 PaglCir = E 2 Piilf it

H‘hm is the same as (16), since the two differ only in the order of
summation. This completes the proof and shows that a triple prod-
wet PQR is unambiguous even if parentheses arve omitted.

The proof of Theorem 1-1 actually proved a special case of the
associative law. We are now in a posifion to repeat that proof in
very brief form. The system of linear equations may be written
isee (13)]

{17} AX =L
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and the substitution (9) may be written X = BY. Then substitution
in (17) gives
A(BY)=L=(AB)Y,

by The;nem 1-3. Hence the new system has A B as coefficient madrix.

ExERcISER

\/I./'jGiveh the matrices

3 a4 1 27\
N R a4,

Caleulate the following products: R

() (ABY, B'A"; (b) (ACY, C"4’; (e) (BCY, C'B' N0 _
2. If A, B, and (' are the matrices of Exercizo l\t,(;st the associntive law
for the product ABC, D

3. Find all matrices B obeying the equation~\\

LR ]

4. Find all matrices B obeying tﬁé’é&uation
0 Fp_fo o0 1]
02 00 2 ,

5. Find all matrices B.which commute with

P, D1
O\ 4= [0 2]'
| 7
¥6.¥ Use Thaorem 1-3 1o prove the associative law for products ABCSH of
four magrices. That is, prove the equality of all five of the following products:
[(AB)CID, [A(BC)ID, A[(BC)D), AIB(CD)], (A B)(CD). The associative law
~i§ #ue'{can you prove it?) for produets of gn
how parentheses are inserted so that only two matrices are to be multiplied
each step, the same product magrix is al

c . ways obtained.
@ If P commutes with &, show that P and Q are square and of the same
sze.

_ @j&r If P commnu

¥ number of matrices: no matter

tes with @, show that p commutes with ¢,

* A atar preceding t_he nur_nber of a problem indicates that the problem
sets forth & property with which the student should become familiar. Since

there are frequent referencos to such properties, the student should read, and.
preferably work, all starred problems,
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1-4 Diagonal matrices. A matrix 4 is called diagonal if it is
square,* say n X n, and if its elements off the diagonal are all zero:

ay 0 ... O
0 (1.7 TR 0
(18) 4=
.o . ~
6 0 ... a .
To save space we shall use the notation PR N,
(19) A = diag (ay, . .., @) )

to denote the matrix above. It is a simple exercise ta ver;fy that a
product AR is cbtained from B by multiplying the}s\h row of B by
ai, 1=1, ..., n. Inlike manner BA is compdtéd by multiplying
the jth column of Bby a;, j=1,..., 50 AN

If the elements «; in (19) are all equa] td\af’common element e,

(20} A = diag (c e, c),

A is ecalled a sealar mairiz. Then. ,43' is computed by multiplying
every element of B by ¢, and t-he.jsﬁ;ﬁe is true of BA (if the dimensions
are such that B4 is defined). ~For this reason a product AB or BA,
where A is the scalar matiix above, is denoted by ¢B, and this is
called a scalar product, {O*r\a process of scalar multiplication. Also,
the elements a.; of matrices 4 = (a;;) are ealled scalars for the pur- -
pose of sharp contrést with matrices themselves.

A sealar matrix/whose diagonal elements are equal to unity is
called an ideptaly matriz and is denoted by I.  When it is necessary
to indicatg ’che number % of rows and columns in 7, the symbol 1, is
used in Pluce of 7. Hence 7,8 = B = BI, for every n X s matrix B.

JAlso the sealar product cB is equal to both of the matrix products,

gﬂ) = Blel,) = ¢B.

ExERrcses

“w 1 If A =diag (@, ..., @) and B = diag (5, ..., b,), prove that

AR = BA.

25IF A = el,, prove thet 4 commutes with every n X n matrix.

3. If B ig a general 3 X 3 matrnc (bs;) and A = diag (&, @, @}, compute
AB and B4,

* (Qeeasionally, as in Chapter 7, this term is also applied to nonsquare
matrices (a.;) with ay; = 0 for ¢ 5 j.
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1-5 Addition. "The sum of two ns matrices A = (a.) e
B = (bi;) is defined in the natural way by adding similwly plaeed
elements:

A+B=C=1ley), ecy=aytbi

AJl familiar number systems possess a quantity z such that e+ = -
for every quantity z in the system, namely z = 0. For n X s madrice:
there is a quantity similar in this respect to 0, namely the N
matrix whose elements are all §. It is called the n X s 2070, g
Each zero matrix will usually be denoted by the symbol 0: (he A Re
will suffice to distinguish it from the sealar 0 and to mgke Clene 1l
dimensions of the zero matrix. "G

Another analogy between the properties of the sx::il:i‘l: 0 anel of zero
matrices is the obvious fact that \Y

0B=0, BO=0,/n"
In these equations, however, if B is x.;s‘\and the fiest zero matris
is m X n, the second zero matrix rpuét' be m X 57 the third zero i-
s % i for some integer {, and the last-:ﬁero isn XL

The property in element-ary”é,fgnbm that alb+ ¢} = ab + we -
known as the distributive law ™5 Its matrix analogue is true.

74

TeeorEM 1-4. M qigf?}mﬂliiplimtion 8 distribulive:
AB+CQ)SUB+ AC, (B+CVD =BD + (D,

To prove thefitst of these, let 4 = (ai;), B = (0,0, and (' = (r, )
so that B -l-'t}\: (bkaF ¢ ’ The Blem‘én,t . Hhly o { = {r,.] .
D, ' tl H I wee 0

A(B + Q}{S}hen ' ’ m the (4,k) place ol

) s\ 32, abp + e) = 2 @b + 2 @iiC iy
i 7

e

oo, .
C e;n:hxch is the sum of .the elements in the (3,k) places of AB and 10"
The second distributive law is proved similarly.

The concept of addition ma .
: ¥ also be used in discussing . )
AB. Buppose, for example, that ssing 4 product

2 3
A = [ H B = [bl “@
' 4 5_1 b2 €q '
Then if AB = (' = (¢;;), we have

C= [21’1 +3b 26+ 3¢
4h, + 5bs 4o 4+ 532] ’
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If we let B; and C; denote the.ith rows of B and C' respectively, we
may condense this formula for C';

0= I:Cl:l _ [ZBl + 382]
C‘g 48 1 + e)Bg
Iere 2B, and 3B; are the scalar preducts

231 = (21’1, 2(3_1),
3B, = (3bs, 3wy), O

so that o
2By 4 3B; = (2by + 30y, 261+ 3ea) R >
= \
In similar fashion '
48,4+ 8B: = (4.
More generally, if B = (by) is 5 X ¢, its rows, J
By = {bj, bp, - . :bb )
are 1 X t matrices B;. I A = {(a:p), 1;1},81 ('z:,k) placein € =AB = (cg)

is occupied by SN
{21) i = abi +~@;’2‘1}:z'k'+ cee b gD
The #th row €; of C is ..." '

0§ = (c,,l, City oy Cit)y
and we may condudeXom {21) that
(22) ‘U‘ = gu4B1 + apBs + -+ + aiB..

Here each term'\a”B is a secalar product, and the two sides of (22) are
11Xt mat&es whose kth elements are equal by (21). An expression
like thatben the right side of (22} is called a lZnear combination of the
row S"Br;'. .., B, with coefficients g, .. ., Gz

"Phe reader may describe the product C AR of 232 matrices
\)V(‘ in terms of columns of 4 and €. Generally, if A is partitioned
into its columns

AP = col (al.f) P25y « o vy an}')!
the %kth column of ¢ = AR is found to be the matrix sum
(23) (i = Amblk 4 A(z)b% A4 oee 4 A(S)bsk;

that is, the kth column of AR is a linear combination of the columns
of A with coefficients taken from the kth coluran of B.
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TrgoreM 1-5. Each row of AB is a linear combination of the rows
\y\}‘( of B, and each column of AB 1s a linear combination of the columns
of 4.

14 is important to remember not only the idea in Theorem 1 5 L
also the manner in which the linear combinations ure formed.  If
each row B; of B is regarded as a single object, B tukes on 1l ap-
pearance of a column matrix, N\

B=col (B ..., B O

. e\

' Then (22) shows that AB may be computed by multiplyingeach row
' of A by the “one column” of B. Equation (23} 48¢lds o similar
statement wherein the columns of A are regarded(aly single ohjects,

and 4 is a row of these objects. \/

AN\
o : . Exercises \\
- ALK :
' | 21 _[0N _[2 3
_ pe2a) o) 2[00
- compute 2P 4 30 4+ R. ‘

o 2. In Exercise 1 find the yalile of ¢ if
' ~r” . 8

-1 13

‘ 30 t'he ith ard jth rows of & matrix 4 are alike, prove that the ith andl
Jth rows in any\product AB must be slike,
4. Ifihe-Bthrow of 4 is (1, 1, 0, 0}, describe the 5th row of AR in tertns
of rowg of"B
§.\ 1 = cal (1, —1, 0, 0), describe BA in terms of columns of . 1o
thg same if 4 = col (1, 1, 1, 1),
(N8 Given that

.P"{"\?Q+CR=|: 0 O:I.
\\ . .

V 11 1y 1
1 3 3 23
B: 1
1 -3 —1 1 A=}
1 -5 -2 -2 P

show that there i ; :
that A'R = Ff ls‘;:' étual)l})er ¢ {and find its value) such thaf; BA = 0, such

7. If B is the matri : ¢ .
it BA = col (0, 3, __zXEfBExerczse Gand A = ool (ay, 1, 1,. ay), find ay and oy
8. I@tP,Q:&ndeeﬁxedn X nm

every matrix aP 4+ ¢, + ¢,R if and Oatrmes. Prove that A commutes with

nly if 4 commutes with P, Q, and K.
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9. Prove that a 2 X 2 matrix A commutes with every 2 X 2 matrix if
and only if A commutes with the four matrices

Lol [0 [o) [51]

Find all such matrices 4.
*10. Using a method suggested by Exercize 9, prove that an n X » matrix
A commutez with every » X n matrix if and only if A iy scalar,

*11, Prove the following rules for transposes: _ O
(A+BY = A’ + B, (cd) = c4". <O
N\S ©
12, Find formulas for the following products: - A Dy
(a) (4 + B)(C + Dy; N\ 3
(B) (4 + B){4 + B); \~

() (4 + BY4 — B).
13. Prove that (4 + B){(4 — B) = Az — B if Qld only if A eommutes
with B.
14. The sum of the diagonal elements of a mahux A i3 called the frace of A
and denoted by tr (A). Prove that tr (A + B) = tr {4) + tr (B), and
w{cd) = c.tr(4). . o\

4artitioned matrices, Ifany rows or columns, or both, of a
 matrix A = (gi;) are deleteds the reetangular array that remains is

called a submatriz of 4. Each element @;; is a submatrix obtained
by deleting all rows e\cpt row 4 and all columns except column ;,'
Also, if A has at least four rows and six colurans,

AN ) [LET S 6
~'.\" - B= [343 G5 045]
is the su}inatrlx obtained by deleting all rows but the sccond and
fourthpand all columns but the third, fifth, and sixth. Each row or
(,t)lgm:hl of a matrix is a submatrix.
\Tﬁe trick of multiplying matrices by partitioning them into rows
or columns can be pursued further. Let

- an e | Gz G i
Gz Qgg | Oz Oy dop

A= = (Ah 2)?
Az +Oge | sz 34 Qg
g Qg | dgg Qag G5

| where, as indicated, 4, is the 4 X 2 submatrix made up of the first
two columns of A, and A, is the 4 X 3 submatrix, whose columns are
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the last three eolumns of A. Let B be a 5 X 3 matrix so that the
product AB is defined, and partition B into

bll bIE bl:i

bay bzz hes B,

B= b31 bae b =|ih,2j|r

ba b by
by bss  bes ~

T where By and By are the indicated submatrices of 5, We S}l:l!]s{vl'ﬂl_\'
i that (™

(24) AB = (4, Az)[gl] C B+ B o\

'\
Ny

g0 that AB is the sum of the matrix products .4 lh‘}ﬁml Aufia W
partitionings of 4 and B have been chosen so that these pradiets e
defined: the numbers of columns of A; andybetvs of By are both o,
and for 4, and B, these numbers are both'g™

To prove (24), let C; denote the sth\iow of C = AB = (ra), anii
R the th row of B, so that \+

(25) C:;= (ﬂiiR1.+ a,@Rz)sﬂ-}'{.dmRa + auRi+ asRy)
by (22). The first parenthétieal expression in (25) is the 7th row
‘of 4:B, and the second isithe 7th row of ApBs, whenee €', (the ah

row of AB) is the sum{of ‘these ith rows. This statement amotmt

to (24). It is clear 'that this proof works for 4 and B of any sizes
such that AB is defined. Thus

THEOREM,\I%@. Let A and B

*)

be malrices which are partitioned s

fotlowsy. L
.\Q ! Bl
: ‘\ ) A= (4, V: PR s A,.)’ B =
N/ ;
A it D ABey proidad only hat sy prot

. Whil - .
While only the cage p = 2 was diseussed above, the generalization

ésinlcfgnglelglate.d A further generalization is commonly emploved.

makes no f])j[;foefl;fliecif=A4B (nAlay be computed a row at a tinme, I
i 3 : = 1"":Ar is f . artiti 1 r

horlzonta‘llhne drawn through it at any 3)1acelfrther partitioned by u




k|
i
K

- @en AB =

1-6] PARTITIONED MATRICES ' 15

A]_[ Alg . s A_'Lr
2 -_ Ll
( 6) A I:Azj_ A22 A2r

It can then be seen that

-‘411}31 + e + A-lr-Br
AuBi+ -+ 4+ AgB,

Suppose that the upper layer in (26) includes only the first s rows in A.
Then (27) is proved in exactly the same way as Theorem 1-6, except\
that the cases ¢ £ sand £ > s are considered separately.  Moreoy: er

it is elear that any number of “horizontal sepurators” may be {)a,"s:sed
through A,

An o0 AW By ... BN
(28) 4= , B= Qb
I1 gt .- Am- . BTI X’\\’: B ;

and any number of “vertical separa’rom’“through B. The result,
which the mader can easily verify, is btated as follows;

Torowes 1-7. Let A and B be ~matmces such that AB s defined
and A and B are partitioned as»m (28) If the products A yB . are
defined for all values of 1, 3, rmd?f AB may be com,puted i terms of
submalrices as follows: .“,\

&§%“ Oy,

.
) S

4 \ )
- :t\."' . *
:"\:” . qu P Oqt
\\ C = 44 1813 L{‘l MBZJ + 44- t,rB'r;r

Thus'\AB may be computed with the “row-by-column” rule of
m tlphcatlon applied to (28) as if the submatrices there were or dinary
elements. Submatrices appearing in partitionings like (28) are fre-
quently called “blocks,”” and the mulliplication described in Theorem
1-7 is called block muldtiplication. A block is thus a submatrix of 4
selected from a succession of adjacent rows and adjacent columns.

Block multiplication is partieularly handy if ¢ =r = ¢ in (28} and
all blocks off the diagonal are zero. Then by analogy with (19) we
may write

(29) 4 =diag (dy,..., A), B=dag(B,...,B)

H
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and prove at onee from Theorem 1-7 that
AR = dlﬂ.g (AlBl, ey ArHr)
Here again the blocks behave like ordinary elements.  But wi cannot

conclude now that 4B = BA unless we know that 1,78, /.4,
i=1,...,r

A matrix like A in (29) is called the direct sum of A,, ., . ., A,

. . . N
This terminology will be employed later.

O\
Exencises O ’
L If P\
-1 3 &
a-[7 53] B=[ i 0_\}
2 M\Y1

caleulate AB first by linear combinations of ;eﬂ%,’se(:uml by linear e hina-
{ions of columnsg, N\

2. Caleulate the product AB in Excrqisé ' ¢ by writing A = (., A, where
Ais 2 X 2, and L

-_— g}\ 9
(b) B =[ 0" —2};
W2 V1 1

]
-2 |-
\O 1

oM.
17 Fields of scalars,
L. (mature of the scalars,

Thus far nothing has been said about he

C the elements COMPOSIng owr matrices. Some

O teaders may have assumed that they are arbitrary real numbers,
others that they are complex numbers. Whatever they ure, our
usage of t_h:am indieates that they constitute a number" H\'Sff‘!m n
which addition and multiplication are defined and are subjgot t.c: the
u_sual laws of .elementary algebra. As a matter of faé,t the 1 . Henoe
tions of matrices require that the scalar number systerr; cht‘hI:‘pl‘f":lLlS
for Some purposes and the complexes for others. The modorln ;n:t.t‘.h-
ematmlgn requires many o{:,her number systems. In order to avoid
?epeatfe proofs for the various Systems, we consider n generaliz: tion
Including all of them, g type of system called a field senere
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Each of the familiar number systems such as the reals or the
complexes is a collection § of objects together with two operations
called addition and multiplication. Addition associates with each
pair, u and », of elements of F a unique quantity of & calted the sum
of « and » and denoted by % +» Sums have the following prop-

-erties for all u, v, and w in F:

Al (w+v)+w=u+ (v-+w).

A2 yu4tv=v+u

A3. ¥ has a unique element 0 such that % + 0 = .

A4. For each v in F there is a unique v (denoted by —u) in i ﬁ'uf}h

that w4+ 2 = 0.
Multiplication associates with each pair, % and v, of elements of § a
unique guantity of ¥ called the product of u and », denetcd by wp,
and having the following properties for all %, », and w~ﬁa &

M1, (ur)w = ulow),

M2, we = »u. \3

M3. ¥ has a unique element 1, dﬁerent from 0 sich that 1u = »
= ul. N\

M4. For each % » 0 and in ¥, there ig a unlque v (denoted by w)
in § such that wr = 1 = pu ,'.j ‘

Connceting the two operations aa:e the distributive laws, valid for
all u, 9, and w: .
ulv + w) = wr + wa, \
(v + wu = vu + wue\J
Any vollection ¥ of Qb\\QCtS on which sums and products are so
defincd that they lie inng and obey the laws A1-4, M1-4, and D, 15
called & feld. P\ _
Subtraction g‘ga\djwbion are defined in a field by the equations

A\ u—v=1u+ (—v),

,\

3 \ w/v = u(y ), | (v = 0)

> Y

The four elemcntary operations (also called rafional operations) are
thus “a¥ailable in any field. One ean prove from the postulates
A1-4, M1-4, and D that the manipulations claborated in the ele-
mentary texts on algebra are valid in any field. Sinee it would
‘divert attention too far from matrices, these proofs will not be given
here; the reader who is interested in developing the fundamentals of
field theo;y is referred to numbers 3, 4, 10, and 17 in the References.
Polynomials

L T TR B O 2
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with coefficients a; in a field & are said to be polynomials over §.
These, too, are subject to the usual manipulations of algebra.

The totalify of real numbers and the totality of complex nwmbers
afford two common examples of fields. The sum and product of twe
real numbers are again real numbers, and the properties A1 1, M 1-4,
and D are well known to be true for these numbers; and =imilarly
for complex numbers. Some less familiar examples of ficlds are set
forth in the next section and its exercises. The important paat is
that the concept of a field is an abstraction covering manyagynber
systems, in every one of which quantities may be added,, gx'f}}]’l-:nvtod,
multiplied, and divided according to the rules with which/the reader
has long been familiar. N

A matrix is said to be over & if its elements belony to the lield ,
and a theorem is true over & if it is true when Fak the field of <calars
for all matrices concerned. As far as possible the theorems in this
book will be stated and proved with cgoneral field ax the fickd of
sealars. In some parts of the theqr;x\(.he results are not known
over a general scalar field, or they, take different forms for difierent
ficlds. Suitable restrictions on #ietheld will be staded in these cases.

1-8 Sets. Any colleqtio:ﬂ ‘of entities iz known as a set or o closs
The students in a pargiedlar rcom, the books in a library, the trees
in a forest, the letérs on this page, all are examples of sets.  The
objects be]ongiqg\é & set § are called members of §, and are =il to
belong to § oL h:q in 8. If 8 and J are sets and every member of Sis
also & member of 3, we say that $ is confained in 3 (notationully:
8 = 7), 61 contains § (notationally: 3 = §), orthat $ isa subsct (or

..‘mb’ §s) of 5. It is important to note that 3 < 3, that is, every set
sa subset of itself, :
S o) ‘The set & of all rez?l numbers is thus a subset of the set @ of all
{ yf&orgplex. numbers. Since & and @ are fields, and 6t is contained
mn d, U E] a}so called a subfield of €. A matrix over & is called real,
Eﬂ o matll:,llx over € is called complez. The notations ® and ¢ will
ni:geb?w-e throughout for the fields of all real and all eomplex
racti r? TeS{)‘ect%ve]y_ The ‘Stlldt‘nt who is interested only in the
ED?(?DE?{ ;2I;r{eat10rﬁ of matrices may prefer to think only of real or
) ices when, a5 in most of the following w s eSS
matrices over a general,ﬁeld_ ollowing work, we diseus
If 1
agaifif;ny’ri?df the_ sum of two quantities (or members) of F 18
' 8 1act 18 expressed by the statement that F is closed
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under addition. Similarly ¥ is closed under multiplication, subtrac-
tion, and division. (Division by zero is tacitly excluded from con-
sideration.} Thus we may say that a ficld & is closed under the four
elementary {(or rational) operations, This, in fact, is the major idea
motivating the concept of a field,

It can be verified that if ¥ is a subsct of a field & such that (a) T
containg at least two members and (b) & is closed under the four
rational operations already -defined in &, then &, is a field, hence a ,
subfield of . If we accept this criterion, we can find many interesting
subfields of €. One important example is the field of all ratiagial
numbers, which simply are all ordinary quotients of integers. ¢

A less familiar example of a field is the set & of all quotlents

P{x) D
Q) O
of polynomials with real numbers as coefficients. TFhis set F is closed
under addition, since \*\ -
Pi(z) | Pae) _ Pi(2)Qa(x) BBQ()
Culx) * Qu() (3)0x)
Both numerator and denomingtor ony t,ho right are polynomials over

®; we have therefore shown that a sum of two members of & is always
in§. & is also closed under mulfiplication:

Py(z) #yw) _ Pua)Py(@).
' Ql(ﬂf‘)\\Qz(m) Qu(z)h(z)
These closure propeytqgs are the crucial ones in this example. The
reader can verify edeh’of the properties A1, M1-4, and D.
’\n

AN\
AN EXERCISES

S

1. Verify that cach of the following subscts of @ forms a subfield. (Hint:
Show thatxcach subset is closed under the four rational operations.) (a) The
ratldxkal‘ ynumbers. (b) All quantities ¢ + 5V'2, ¢ and b rational.  {¢) All
quantltlcs a4+ bV2+ eV, a, b, and ¢ rational. (d) All quantities
e + 5v'—1, a and b rational.

2. Show that the rational mumber ficld has no subfield other than itself.

1-9 Square matrices as a number system. For each field & let
¥, denote the totality of n X n matrices over ¥ Since &, is a collec-
tion of objects on which addition and multiplication are defined, it
is interesting to see how many of the properties defining a field are
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valid for ., and to note carefully those field properties which are
not true in F,.

Since matrix addition is carricd out clementwise with cor respond-
ingly placed elements, propertleb Al and A2 are clearly valid for F,
in consequence of their validity in¥. For 43 the » X n zero matrix
clearly meets all requirements. If U = (ug), take V= (i),
= —ui;. Then U+ V =0, and this V is the only matrix whose wlli[l
with U is 0. This verifies 44, and all of the addition pustul.m S {or
a field are valid for F.. \

As for the remaining postulates, we have already \ermod D oand
M1. The identity matrix I, serves as the 1 of po:,tu,la.te M3, Both
M2 and M4, however, are invalid. For example,

1 2 oa”
A'[3 4} B = ) o]\’
o1 T8 4
AB—[O 3], zas 0],

g0 that M2 is not universally b&tlbﬁed in%. Also, B above is o non-
zero quantity of &, but there jg m) matrix

’E;= I:Cu Cm:l
_ Ve Cu a2
such that BC = I or¢6!B = T; therefore M4 fails.
Any set of objeats. on which addition and multiplication are so de-

fined as to obey‘pO&tulates Al M1, and D is called a ring. 1T M2
is true thesing 1 ealled commutative, and if M3 is true the ring 1s

* gaid to hw&ga unity. Hence

TQ\ORFM 1-8.  §, forms a noncommulative ring with & unity.

«Otte of the most familiar examples of a ring is the totulity of

f’c)rdmary integers (positive, negative, and zero). While %, thus hus
) much in common with the integers, it also has some startling dif-

ferences. l\oncommutatnrlty, as observed above, is one such dif-
ference. Another is the presence in ¥, of matrices 4 and B, both
nonzero, such that AB = 0. Such a matrix 4 is called 5 left divisor
of zero, and B is called a right divisor of zero. Example:

A=[ _], B=[i ?é,] AB =0,

We bshall not refer to Thearem 1-8 or continue the discussion of
rings, but there will be oceasion to treat matrices which are divisors of
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zero.  The main purpose of this section is to underline both the
similarities and the distinctions between the algebra of square mat-
rices and elementary algebra or, as we may call it, the algebra of
scalars.
Exuncises
1. If A and B are matrices such that A8 = 0 and B # 0, prove that there

is no matrix ¢ such that C4 = 1.

2. If A is the real matrix n
¢\
=[] O
prove that the matrices ' R
l')]_ bz & /
B= [251 262] )
are the only 2 X 2 matrices B such that A8 = 0. \ )

3. If 4 is the matrix of Exercise 2, find all 2 )&2 Matrices € such that
4 = 0. Then use the result of Dxermse 2 to fmd iall matrices I such that
AB — BA = 0.

*4. Let A be a square matrix over . P;;c}ve tha,t A commutes with evory
matrix of the type c.A” + ad™ + -2 %% ad + e, where the ¢; are in 7.

1-10 Matrices of one row ox(0ne column. In Section 1-2 we saw
that a system of simultaneggl%}iinear equations can be written in the
form AX = L, where X =gol (a3, ..., 2,) denotes a column matrix.
The system 4X = L may be regarded m the following light: A op-
erates to convert thexcolumn matrix X into the eolumn matrix L.

Column matriced“appeared again in Theorem 1-5, where it was
pointed out aﬂ:\each column of 4 matrix product is & linear cormbina-
tion of the, cbl mns of the left factor; a similar result for rows was
observedi X

All Qf fhese results indieate that matrices having a single row or a
singlévéolumn may deserve special attention. The next chapter will
be devoted to such matriees.

APPENDIX

1-11 Order of summation. If € = (cz) is an n X s matrix, the
sum of the elements of € is given by the formula

8= 22%

i=lk=



e
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This formula indicates that we sum first for &, keeping j fixed; that ig,

“we find the sum of the elements in row 7. There are » such sun,

one for each row, and these are added when we sum for j as required -
by the second summation symbol. The same sum & is obtained if
we first add all the elements in each column, then add these column
sums. But this process is indicated by the double summation,

5% % o
k=1j=1

O\
The two formulas thus found for 8 prove that e N
R ) & T ":} ’
(30) D=3 Dk o
i=1k=1 k=1j=1 LV

That is, in any finite double sum the ordevof summation muy he
reversed without affecting the value of thesstim.
In formulas (10) and (i1) the suhscyi{it% remains fixed 1hroughont”
the summations, so that we may safély’ use the notation
Ciss :—_"ajg'g:'kyk-

The equality of (10} and (ll)fghéh is assured by (30) above. In the
proof of Theorem 1-3 we nditst know that

(31) %gpe;qﬂ;m = 2 ; PiigicTer
ok i i

Since ¢ and ! are ﬁx\ed, we let

PN Cin = PisGistsi,
50 t-hat“t\l%g desired equality (31} is a consequence of (30).

&

.\ 7

\ }
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~~ CHAPTER 2
VECTOR SPACES

2-1 Introduction. The representation of points of the plane by
means of ordered pairs (z, ¥) of real numbers, or points of space by.\
ordered triples (z, y, 2), is a familiar device. These idcas may readily
be associated with the vectors* employed in physics to represent
forces and other concepts. Suppose, for example, that two fpﬁces’ Ji
and f; acting on a particle are represented by veetors emar;aténg from
the origin and ferminating at the points whoso rectangu[apf:ooi’dinates
are (z1, y1, 21), and (23, 12, @), respectively. Wo majnthen use the
notation, ¢
(1) fr= (1, 3, 20, fr= (2 yg,:?}.'

The resultant force on the particle is denot;e&}}y fi+ fr and is known
to be represented by the vector (emanatifgfrom the origin} which is
the diagonal of the parallelogram hayfing the two given vectors as
sides.  One may verify that the .g:i}ﬁrdina-tes of the end points of
fi+ fe are the sums of corresponding coordinates of f; and fi:
fitfa= (’51\‘1' X2, 1+ 12, 21+ ).

This property ig knowx\@s- ‘the parallclogram law for addition of
veetDrs. \

Another familiar operation on the vectors of physics is that of
multiplying by s,\réa\l number. Thus &f, is 2 vector having the same
direction as fi if K45 positive, or the opposite direction if & is negative,

. and having\o@g’th equal to |k| times that of f;, One then finds that

(2) .‘"o kfl = (kxl, ky}_, }1?21). '

A
If i/18,0; kf; is defined as the zero veector, which is merely one point,
the drigin. Thus (2) is valid even for k = 0,
2-2 Definitions. The concepts of the previous section may be
generalized by considering ordered n-tuples

(3) E=(x, ..., %)
- R
* Arrows whose directions indicate the direction of, say, the forces, and
whose magnitudes are proportional to the magnitudes of the forces.
" 23
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of quantities z; Iying in a ficld . Each n-tuple (3) is called a vector
with n coordinates or components x.~ The totality V.(F) of all veetors
(3), for a fixed integer n, is called the g-dimensional vector space
aver . _

Han= (4, ..., %) is another vector belonging to V,.(F), the sum
£+ 7 is defined as the vector

o= oty - @ty \
and for each scalar & (quantity in ), the scalar product k& is dafined as
kE = (kxy, .. o, Kz, O’

It will be recognized that V.(¥) is the totality of TyX n matrices
over F, and that the addition and scalar multiplicétion defined here
are simply the matrix operations defined in*Ehapter 1. However,
it is of no importance that £ is written as a_tow. It may be written
as a column, and V.(F) may be regardédyas the totality of n X |
matrices over % Thus ordered n-tup’l}s will be regarded here s
objects which may bo represented @# Tows or columns, whichever
way be convenient at the momen&i In a later section of this chapter
we will consider still another. Way in which vectors are sometimes
written, AN\

That vector of V.(F),4¥hose components are all zero is ealled the
zere vector and 1s del}gt-e\d by 0. Although this is the same symbhol
used for the zero E@a.lér, no confusion can arise. In the equation
£-+n =10, £ andgnbeing vectors, the 0 certainly cannot be a scalur,
and in the e;cpfeséion 0% the zero cannot be a vector, since (for the
present) we,de' not multiply vectors. Lower case Greek letters will
altw'ay\dlénbtc vectors.  Other symbels alse will be used for vectors
in various special situations, but a small Greek letter will never
denvte anything but a veetor.

2\ “For every vector £=(ey, ..., c.}in V.(F), there is a vector 7 such
N _hat
£+n=0,
namely the vector g = (—¢,, . .., —¢,). Clearly this is the only vector
7 whose sum with £ is the zero voctor. This vector », uniquely de-
termined by £, is called the negative of £ and is denoted by —£.  Since
n = (~1)£ the definition of —¢ may be written

~§{ = (-1)L.
Bubtraction of vectors is defined by the equation

17— E=n4+ (D&

e
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It is Qasy to verify the following propertles valid for all vectors E,

&, L & in Va(®) and all scalars £, &, .. 4, B

(4) &+ Ez) +TEHE=5h+ (52 + &), 51 th=5tE

(5) k(f -+ E) = ki + -+ + BEy

(6) (s + - k= kaf + -+ + ki,

OR (Fkea}t = Ra(keab). "
The properties (4) are merely special cases of the corresponding laws
for general reetangular madrices. ~

‘These properties or rules permit us to solve simple vector equations
or systems of equations very much like simple algebraic equwtzoﬁs
If O
£+ by = (8 —35, b); (".:'«.
E - = (2 1 0): “'

then adding 5 times the se'%ond equation to the firdt @es
6= (18,0,6), &= (301{\ '

whence
=£—(2,1,0)= (1 *1‘ 1)

Hﬂ_&;ﬁp_gges.. Let ¥V be any cull’e(ahon of vectors belonging to
V.(F). Then V is closed under q_(;_tdmon if V contains £ + ¢ for every
£ and every ¢ lying in V. Similally,.V is closed under scalar multipli-
cation if the presence of & ip{¥ implies the presence of k& in V for

every scalar k. O

EFINITION 1. A s&)set V (containing at least one Vector) of
Vﬂ(ﬁ) is called azsubspace of V.(F), or simply* a vector space_ over 3,
if V is closed unaer addition and scalar multipication.

One obvio sxsubspace of Vn{F) is V.(F) itself. Another is the sub-
get Z con&hg only of the zero veetor and called the zero or null
subspacé To verify that Z is a subspace, observe that if £ and 9
bolengEo Z, both must be 0, so that their sum §+9 =040 =0 also
b(%ngb to Z, and every scalar product k& =k - 0 = O belongs to Z.

Every vector space V contains the zero vector. For V contains
some veetor £= (¢, ..., €s), hence contains the scalar produet,
0g=(0,...,0)=0. Also, ¥V contains the negative, —f = (—1)¢, of
each vector £in V.

* Strictly, the vector spaces deﬁncd ‘here are called finile or fintte-dimen~

sional. These adjectives will be omitted, since no other type of Vector space
will be studied here.
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. ¥t V contains vectors £, ..., b, it ust also contain every vector
' &

{8) : E=ki o TR,

where &y, . .., k¢ are arbitrary scalars. Any vector having the form

{8) is called a linear combination of &, . . ., &.

.r"fHEOREM 2-1. Let &, ..., E belong lo V,(F). Then the tolelily
V of linear combinations {(8) s a subspace. ~
Let £ in (8) and .

; n=hi+ -+ hE AN

be any two vectors belonging to V. Then A O

tdg=(h+ )+ -+ -+ h,)%tf”:"
= (k)G + -+ (kgL

are linear combinations of the £;. Thus V #\elvsed under addition
and scalar multiplication, and hence is a yacter space.

“DEFINITION 2. A veetor space V. _‘i_'g_s'@i}d_ to be spanned by vectors,

b, ..., B3 (D &, ., & le in ¥Wand (2) every vector in 1 is

a linear_combination of &, .. .5 §¥

Another way of stating this}tiéﬁnition is that V" coincides with the
totality of linear combinations of £, ..., & Thus in Theorem 2-1
¥ is spanned by &, .. L fEn
 Let each vector (:r:,({},.é) in V3{®) be interpreted as the point whose
rectangular coordinhtes are z, ¥, z. HKach vector (z, y) ir V(o)
may also be inferpreted as a point. Then each nonzero subspace of
Vis(®) or Va(@) becomes a collection of points which may be shown
to be V;g'(,@'\ér a line or plane through the origin. For example,
the subi?aéc spanned by £ = (1, 2) consists of all points (z, 2x), hence
1s the'lite y = 2x, and this is the line determined by the origin and
thépoint (1, 2). The subspace of V3(®) spanned by (1, 2, ) consists
<b:f":-ill points (x, 2z, 3x), hence is the locus of the equations y = 2,

%= 3z, known to be the line connecting the origin and (1, 2, 3).
Again, the subspace spanned by £ = (1,0,0) and 4 = (0, 1, 0} consists
of all points (z, ¥, 0), and hence is the zy plane.

The xy plane is a subspace V of V;(®) spanned by ¢ and 4 above.
However, V is also spanned by

%E = (%r 0) 0): %"? = (0; %’ 0):

since V' contains these vectors, and every veetor (@ v, 0 inVis
expressible in the form
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) (z, , 0) = 32(38) + 2yCn).
“A'hus, 2 spanning set for a subspace ¥ is by no means unigue.

EXERCISES

1. Let (1, %, x5} be an arbitrary vector in Vy(®). Which of the following
subsets are subspaces? (a} All vectors with 21 = & = Zs. (b} All vectors
with @ = 0. () All vectors with =), @5 and = rational. (d) All veetors
with z = 1. s ;

9. Show that all the vectors (@, @, T3, %) in Vi(®) which obey z. — 23
= gy — @ form a subspace V. Then show that V is gpanned by Ek:?
(1,0,0 _1): L= (0,10, 1): L= 0,01, L. . NS

3. Let ai, @», and a be fixed real numbers. Show that alk véetors
(21, T2, s, @2) in V(®) obeying @s = @ + a5tz -+ 0%s form a,.gubspace V.
Then show that ¥ is spanned by & = (1, 0, 0, @), & = (QIQ,QG, as), £y =
{0, 0,1, %} . \/

4. Let & be a subset of V,{F) containing at least one yéebor. Prove that 8
is u subspace if and only if 8 contains af + by for all ¥eetors £ and % in § and
all scalars « and b. ;‘x\“

5. Show that a subspace ¥V of Vs(®) coincidgsywith V(&) if and only if ¥
contains the veectors (1, 0, 0}, and (0, L, O),a“nd’ (0, 0, 1). Then determine

which of the following sets span Fa(®): o
(a) El = ('_17 2: 3); 52 = (01' 1! 2};53 = (81' 2: 1)!
(b) m = (0) 0} 2)} e = (2} 21. 0):! s = (U: 2; 2) .;
((}) g.l = (31 3; 1)} .i-ﬁ = (.:};;\Ir 0): §.3 = (0) Dr 1)-

6. Consider the subspaces of V() spanned by each of the following sets
of vectors, Determine whibkof these subspaces coincide with the subspace
gpanned by the vcctors'iri“ a).

{a') El = (11 1: 13‘: &= (0: 1, 2); €3 = (1: G: _1):
(h) ) (21t1;'0): 2 = (2; 0} __2);

(c) fl_(l‘,fz, 3): §2= {11 3: 5)’
(d) 1Te and {5 = (1, 2, 4).

24 j’_ﬁﬁg‘a_r independence and bases. If &, ..., £ le in a vector
spaee’V over F, they are called linearly dependent if there are scalars
Ey, . . . ke 0ot all zero, such that

(9) : klEl g + kasc ={.

If no such scalars.exist, the seb &, ..., &, is called Linearly inde-
pendent (briefly, independent).
The vectors

L= (1; 23 1); £ = (O} 1,- D)s & = {‘: G, 23
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in Vs(®) arc linearly dependent, since .
2 -4 - b=
But if
hie k=0
then

hts + ks = (2k, b, 2) = (0, 0, 0),

50 that A =k = 0. Thus & and £ are linearly independent, w hllo
is a Iinear combination of them:

N

£ = 28 -+ 3. .\“\'

The geometric interpretation of these facts is that hat & amI £ span o
subspace Which 1s a plane through the origin, and & i Tewin (his 1 plune.
St

« DermrrioNn 3. If vectors &, ..., & in ay a{\gctm space ¥V are
linearly independent and span V), they are siidito form o basis of 1.
A basis for V,.(F) is readily found: | x;§\"

Uy = (l 0 . &r':[]\)
‘HQ—(O ]. 0 Moo, ),

AN

(G; 0 0.
These are obviously indepmdent and every vector £ = (21, ..., 7.)
is a linear combination éf\them:
o‘ ’
\\ E = :rlul v + Latln.
These vectors ul, » ., uy are called unif vecfors, and the notations «:
will be resepwefl exclusively for them. There are, however, many
other bases\—for example, u1, ..., U,y and £ = (1, 1, 1)
HEQH‘F’M 2-2. If &, ..., & form a basis for V, ever y vector in T
8 Expresszble whiguely as a IZRF&?‘ combinalion of &, ..., £.

pad ,)Every ¢ V is a linear combination of the %;, since they span V.

NAf

E=abi+ - tado=+ - + g,
then

*

(fh - bl)El + -+ (a: - bt)fs = 0;
80 that '

@ — b= 0 (G=1,...,0

becanse of the independence of the £;.  This shows that every a; = by,
and thus establishes the uniqueness.
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We shall see that every vector space V has a basis, and shall de-
termine what aspects of uniqueness a basis has. The next two
lemmas will play fundamental roles in solving these problems.

(%Jm'ma, 2-1. Let &, ..., & be nonzero veclors belonging to a vector
space V over §.  Then the set &, ..., £ 18 dependent if and only if
some tn (1 < m £ 1) 15 a linear combination of &, ..., fma. IR}
this case the subspace spanned by the £ (2 =1, . .., ) is also spanned,
by those &; with © # m. 1

If the & are dependent, an equation like (9) holds with at {enst
one k; 5 0. If only one k; were nonzero we should have &t =0,
£= (%, ..., To) # O by hypothesis, so that some 27 #A) ki = 0,
whenee k; = 0, a contradietion. Hence at least two wivthe k; are
nonzero. The last nonzero coeflicient &y In 9) theﬁs]:nas subscript

m > 1, and we can solve for &x: .

(10) b = (/o) - (o

The converse is evident, In any linear cpn’fbination alr+ -+ ady
the term amé. may by (10) be replaegd by a sum of terms involving
only &, . .-, ém. _This completes the*preof.

Now Suppose that V is spanned by a finite set &, . .., ¢; of nonzero
vectors. If these vectors are dependent, select the first L which isa
linear combination of the & ‘preceding it, and delete it from the list
&, ..., & The remaining & still span V according to Lemma 2-1.
Tf this set of £ — 1 vectors is dependent, a repetition of the process
leads to a set of {52 of the & still spanning V. The process stops
when we reach an‘independent set. Thus:

()

L.‘l"} EMMANZR If B, ..., & are nonzero vectors spanning a vector
space X ‘over &, some subset of &, - - ., & forms a basis of V. More-
overyef 1y - - <o £ (5 5 #) are linearly independent, the subset forming

”m;bdsis can be chosen fo tnelude &1, .. .y £

¥or the final statement of the lemma, notice that the process above
deletes only certain vectors which are linear combinations of the pre-
ceding ones. No one of &, ..., & can be deleted by this process.

EXERCISES

1. Prove the independence of the unit vectors of V(3.
+2. Tf a set of vectors is independent, prove that the set does not include
the zero vector.
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%3. Prove that a single vector is independent if and only if it is not the zero
vector.
4. If &, ..., £ s a dependent set of vectors, prove that any set containing
£, ..., £ is dependent.
5. Determine which of the sets in Exercise 6, Section 2-3, are linearly -
dependent,.
6. Show that £, &, and & in Excrcise 3, Section 2-3, form & hasis of the
subspace V. )
7 Tind u basis for the subspace V of all veetors (21, 23 X 2.} oy N
satiefying x; + @ + @z + @ = O o
8 Let, ..., £ be alinearly independent set of vectors in I",.(ﬁ)\.“.\ﬂum
that 4 is a linear combination of the & if and only if the set Eig. ™, Emy 7,18
linearly dependent. N
9. Prove that the vectors & = (1, 1, 1), & = (1, 2, éhd & = (2,2,
form s basis of Va(®). Find expressions for the unitMégtors us linear cons-
binations of these &.. \
10. In the following set of vectors in Vi{Gt) ,ﬁf}l’ the first £, which =«
" lnear combination of the & preceding itid="(1, 0, 1), & = (0, 2, 4}
B=(1,00)%=(235)
11. Tllustrate Lemma 2-2 with thé following set of vectors Delong-
ing to V = Va@®): f= (1, 1,0,0,8= (1,0, 1,0, &= (4, 1, 1, 1), & =
(—1,0,0,1).

™!
S g

2-5 Bases of V(%) " hetunit vectors w; form a basis for V,(5)
consisting of n vectorss (_Jt will ‘be shown in Theorem 2-4 that every
basis of V.(F) has {b\t}ctors.

THEOREM 2{:{’.’ i &, ..., £ are linearly independent veclors of
Vu(3), thergis a basts for Vo(®) which includes all s of the vectors £..
The se{:c\)f Tnonzerp veetors

(11)";{ B, .. b Uiy ..., U

..spg}as V.(F. By Lemma 2-2 the set (11} has a subset which includes

N&, ..., & and forms a basis of V,(5). This proves the theorem. It

may be stated briefly as follows: every linearly independent get of
vectors in V,.(F) may be extended to a basis. ’

TasoreM 2-4.  If a vector space V has a basts, all bases of V include
precisely the same number of veclors.

Proof: Let ar, ..., and 8y, . . ., B: be any two bases of V. Then
le) @y, Bl; .B‘Zr LR ﬁa

is a dependent set, whence some f§,, is a linear combination of the
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veetors preceding Bninthelist (12). Bya suitable change in notation
of the B, if necessary, it may be assumed that B is B.* Then by
Lemma 2-1, V is also spanned by the set

(13) aiy By -+ vy Bate

Qince o is thus a linear combination of the vectors in the set (13),
the set

(14) gy (1, I811 ey |Bs—-1 )

is dependent. Thus some vector in the set (14) is a linear combing-#
tion of those preceding it and this cannot be oy, since the a; aré
independent. Hence one of the @, say fea (changing notation agaif,
if necessary), is a combination of the vectors preceding it in the’list
(14), so that by Lemma 2-1 the set N

) (15) gy O, Bry .oy B2 .«j\'\ '
gpans V. Ifs <7 2 repetition of this process leadsto the set

(16) ' Oy Ol -+ -3 0O A

as a seb spanning V. Since § < 7, there 'is‘éa} .41, which must be a
lincar combination of the gpanning Vecgu;é (16). Butthenan, ..., o
are dependent, contrary to hypoth@isl" Thus s is not less than r,
o that s = r. Interchanging the}’rﬁiés of the two bases leads to the
like conclusion, r = s. Hence =g,

Sinee V(%) has a basis congisting of the n unit veetors, Theorem 2—4
I, | +$ )
implies &

CoOROLLARY 24, (Hyery basis of Va(F) contains precisely n veclors.

THEOREM 2—,5{ :~\Any set of n+ 1 veetors of V.(F) is dependent.

Proof: i the'set were independent, Theorem 2-3 would provide a
basis inclgding these vectors, and hence having more than n vectors.
C-nrollg,’ry 24 prohibits such bases. '

926 Dimension of a vector space. The results of the previous
seetion justify the description of Vo(5) as a “space of » dimensions,”’
or the definition that the dimension of V(&) is n. The idea of di-
mension extends also to subspaces, as we shall now see.

Let V be any nonzero subspace of V.(5). Then V contains a

* This is not essential in the groument. Tt is merely a convenience in
writing down the vectors in the new spanning set {(13).
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nonzero veetor, which is linearly independent. But ¥V cannot con-
tain a set of more than = linearly independent vectors, Thus there
must be a maximum integer r £ n such that V contains r linearly

independent vectors &, . - ., & If £1s any vector in V, the set
EL‘"‘!‘E"JE?

containing # + 1 vectors, must be dependent, and & must be a linear

combination of &, ..., & In other words, &, ..., & span V, and

being linearly independent, form a basis of V. This gives

THEoREM 2-6. Every nonzero subspace V of V.(F) has krbaw
All bases of V have the same number of veelors. L

The last statement is implied by Theorem 2-4. j~Thé dimension
of a nonzero space V is defined as the number of y@etors in a basis of
V. The dimension of the zero subspace is dvﬁned 48 zero.

CoroLLaRY 2-6A. Ewvery lnearly indqgeﬁd&nt set of t,rt’ctors he-
longing to V 1s exiendable lo o basis of V

For proof we need only reread th@ proof of Theorem 2-3, substitu-
ting for w;, ..., #, a basis a, . L o, of V.

CoroLrary 268, If T has dzmpnswn r, any set of r + 1 vectors
belonging to V s depend{ht

The proof is paralle\\td that of Theorem 2-5.

CoroLLARY 268 Let V have dimension r. Then r vectors in V
form a basis:éf.\v if and only if they are linearly independent.

If th ectors are linearly independent buf are nct a basis,
Corollaz'y\ —6A provides a basis with more than r vectors, eonfrary to
Theoi'em 2-6. .Thus the r vectors zaust form a basis. The converse
is, tmﬂal

2

ExercisEs

'1. Show where Theorem 25 was used in the proof of Theorem 2-6.
. Let r be the dimension of a subspace ¥V of V,.(¥). Show that V = V(%)
if and only if ¥ = n.,
3. In V(&) consider the subspace ¥V of all vectors (1, 2o, @5, 24) sutisfying
#1 + 20: = %5 + 20, Show that the vectors £ = (1, 0, 1, 0} and & =

{0, 1, 0, 1) are linearly independent and lie in V. Then ext.end thiz et of
two vectors to a basis of ¥,
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4. Write a proof of Corellary 2-6A. _

5. Writc a proof of Corollary 2-6B. .
. Find the dimension of the subspace V of V{®) spanned by § =
(1: 1) 23 3)} E? = (0} 1: 2; 2)1 and E!‘l = (3: 2} 4: 7)' ’

\26( F, as a vector space. A_lthough we have written veclors as
matrices of one row, we eould pqually well have written them as
columns. In faet all the developments in this chapter are valid if
the vectors are written diagonally, sinuously, in T-formation, or in
some other shape. The only requirement i that the same ghape he,
" employed throughout any diseussion®; otherwise addition of vept@i‘s‘\

would be vague, since we add vectors by adding similarly plaeed
coordinates. N

In particular, then, nX % matrices may be regarded a9 veetors
with m coordinates, where m = nt. - If the matrices are written in
the usual fashion with n rows and n columns, a@li.t-ion and scalar
‘multiplication may be carried out just as effectivélpas if the matrices
were strung out in long rows: x\ '

) (Gu, vy gy (21, 4 - - gy - .,.".i ’a',;]_, vy ann)-
Thus F,, Wwith matrix mult-iplicat-ion..gégfected, may be regarded as
the same thing as V.(¥), where m2n? and the vectors of Va(F) are
written in an unusual manner,{ :

Now let A be an %X 0 mﬁfriﬁc over 5. Then I, 4, A% ..., A
are m + 1 quantities of Fhs Vi) By Corollary 2-6B they must
be linearly dependent, §0 that there are scalars ¢;, not all zero, such
that AN/

"\a?"Am + Cm—lAm_l 4+ et CUI = 0:
where 0 is thﬁ{zefm matrix of F.. If ¢ is the firsi nonzero coefficient '
in this equim}c-ion, we may multiply ?y jiq inverse and obtain an equa-
tion of (Fhe form,
anv At g hadrt b o F A F kI =0
This proves

TurorEm 2-7. Each n X7 mairix over § saiisfies some polynomial
equation (17) with coefficients ki in 5.

* Strictly, even this is not necessary. If the » coordinates are written in
n eolors, for example, we can add veetors by adding ‘‘blue” coordinates to
get the new «hine” coordinate, and s0 on. -

Q
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2-8 Sum of subspaces. In ordinary three-space Vi(®), consider
two distinet lines L; and L. through the origin. Then there is a
unigue plane S containing Ly and Ly, We may say that S i3 the
plane “joining” L, and Ls. As usual a vector {z, ¥, 2} may be -
terpreted either as a point or as a line segment from the origin to the

point. whose coordinates are . y,

z. Then every point or vector
z Ly (z, ¥, 2) on S can be showr ro
be the sum of a pair of pectors,
— (2] (N
e = (x1, %1, 21) on Ly anda= ()
- / Jg, 2) on Lo, and converstly every
3 by such sum lies on 8.8 Hince Lo, L,
[ Y and 8§ are au}g&plces of V().
X these ideasssuggest the following
Fig, 2-1 important\generalizations,

Let #¢dnd W be subspaces of
Va(F), and let V + W denote the set af\all vectors £+ 4, £ varying
over V and n varying over W. The, reador may verify that V + IV
is closed under addition and scalars multlpllcatmn This vector space
V + W is called the sum or jom of Vand W.

TareorEM 2-8, [If subspaces V and W of V.(F) have no veclor in
common except the ze-;g“ikcmr, the dimension of V + W is the sum of
the dimensions of Wand W.

Let &1, ..., &p@nd ny, . .., 7. be bases of V and W, respectively.
Taken together {Htese v+ w vectors span ¥V -+ W. 1If a linear combi-
nation vamgl;}s, say

.(§ Zaski + Zhm; = 0,
then S
W)
\(18) Zagi = —Zbm;.

The veetor represented in two ways in (18) liesin V and in W. By
hypothesis this vector must be 00, and

Ea;& = 0, Ebm; = 0,

whence every a; =0 and every b; =0. This establishes the inde-
_pendence of the ¥ + w vectors ¢; and n;, which span ¥V + W, Thus

they are a basis, and V + W has dimension » + W, whlch 15 the sum
of the dlmBDSIODS vof Vand wof W.
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1. If » and s are fixed
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unequal positive integers, let ¥ denote the totality

of n 3 ¢ matrices over some field &.
Theorem 2-7 be extended to this ease?
2. Prove that ¥ + W is a vector space.

I V a vector space over F7 Can

3. Show how Theorem 2-8 is illustr
%4. In Theorem 2-8 sbow that eve
uniquely i the form a = £ 4 n with
5. State and prove the converse of
x6. Let ¥ and W be subspaces of ¥V
common to ¥V and W is a stibapace.
of ¥ and W, und is denoted by Ve
7 Lot 8 and V) be subspaces of 13

is a subspace ¥» £ S such that (a) ¥
8. Show that properties {a) and {b

¢ in 8 is expressible uniquely in the
vegtor £ 18 called the prej

of £ on V1 paraliel to Ve Apply thesc
of Section 2-8.
&
L\
<&~
£ :\s.'
"\".

).

o(F) such that
) in Exercise 71

ection of & on Vs parallel to Vi

ated by L, Ly, and S described above.
ry vector e in ¥V + ¥ is expressible
£in Vand nin w.
Theorem 2-3.
Show that the set J of all veetars
This space J is called the intersattioh
. o
T, =8 Show‘t}{at there
4 Ve Sand () Vi 2K = 0.
imply, ﬁ{@féﬁ'ery vector
torm £ + &5, £ INKQYE: in Ve The
t, is the projection

idens to the ration at the opening

'xkhis

N
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CHAPTER 3
EQUIVALENCE, RANK, AND INVERSES

3-1 Equivalent systems of linear equations. A system

¥ "\
(1) 26,-,-3:,— = ky (F=1,.\ n)
i=1 2\
of » linear equations in s unknowns zi, ..., z,, has for @ solution a
~. set of s quantities &, . . ., @, which, on substitution in*(l), reduce the

S left sides tok: (£ = 1,...,n). Thus a solution is, &¢¢ctor belonging
to the s-dimensional space V,(F). This idea ﬁt? m well with the
matrix notation for the system. If C = (c;;);

X=col (&, ...,z.), K=c\01§h¢},...,kn),
the system becomes A/
cX fz..K«'
In this form the system may be uégafded as having only one unknovmn,
the vector X. N\

Two systems of » linear equations in s unknowns Ly, ..., T,0C
called equivalent if everySelution of one system is also a solution of
the other, and vico v@‘sé. Certain simple operations are commonly
used t0 convert sysystem to an equivalent one that may be easicr 10
solve. For instande, it surely makes no difference whether an e~
tion is writtegfﬁrst or last or in some intermediate position. An
equivalept(é}stem is, in fact, obtained if

I.\ o®’0 equations are interchanged.
'II"' An equation is multiplied by any scalar which has an inverse,
i ’“ﬂI. An equation, say the 4th, is replaced by the sum of the 4th
\, equ}ation and k times the jth equation, where j#=1and k is any
scalar.

V14 Y Md

[

Lat

The justification of operation III, though not so obvious as I and
11, is not difficult, and is therefore left as an exercise. The following
system, with real number coefficients, will illustrate the use of these
operations: .

er: 1 — 2w 3 = 6,

G2: Ty — Ta— Xp= —4,

st 23y 4 Bwp + 5z, = 23,
36
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The symbols &, €, and ¢ will denote the first, second, and third
equations, respectively. Further, we shall use symbols like

g —> € — €1, 63— € — 2y

to indicate operations of type 11X réplacing the second equation by
itself minus the first, and replacing the third equation by itself minus
twice the first. These operations give the equivalent system

fﬂ = 2x. + By = . 6,

fa: zy — 4y = —10,
fa: Txs— xa= 1L
Next perform fs — fa — Tz to produce a new third equation, \ \\\
ga: 2725 = 8L, A N/
The system now has the form ) ~‘ h
o -2+ Bas = 6, o

2y — dxy = —10,
97zs = 8L, N
from which one readily finds that 3 = 3, anid) N
gom —10+ 4z =2, =0t dn—3n=1,
The same operations may be vr.';afi{f:i.e'(i out in terms of the 3 X4

matrix Ny
1LI%2 3 6

This is readily recogi}iied as the matrix of coefficients of the original
gystem with the ciqhﬁ'ta-nts attached as a fourth column. It is known
as the augmmfe\d “matriz of the given system of equations. The op-
erations paﬁbrined above on the equations may be performed equally
well on th:e rows 71, Tz, and 5 of the matrix A:rs—r 72 — 11, 573 — 211,
The atrix then is ' '
VV ) 1 -2 3 6
B=j0 1 —4 -10§
0 7 -1 11

Next replace the third row by itself minus seven times the second row,
which gives
1 -2 3 6
¢c=10 1 -4 —10[
1o 0 27 81

Vel
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By restoring the unknowns and plus and equal signs in the uspal
places in this matrix €, we obtain precisely the system from which
the solution (x, 22, 25) = (1, 2, 3) was found. We shall, however,
go a bit further.

First multiply the third row of ¢ by s+, then add four times the
new third row to the second, and (—3) times the new third row to the
first. This produces

N\
1 -2 0 -3
D =10 1 0 21 .’\:\

Adding twice the second row of D to the first give§ N

1 00 1 R4

M=1010 2|

001 3 )
Inserting the unknowns and equal signs,,,\ﬁ(; find at once that (@1, 9, 17)
= (1, 2, 3). '

~"3-2 Elementary row operatiofis’ With the discussion of Section
8-1 in mind, we define three Elementary row operations on matrices:

I. Interchange of twarows, _
II. Multiplication of\a Tow by any scalar* which hag an inverse.

ITT. Replacement 6f*the 4th row by the sum of the 4th row and
k times the Jthorow, where § 5 7 and k is any scalar,

If ©;; denopes’an operation of type I interchanging the ith and
Jjth rows, theyoriginal matrix is restored by performing 9;; again, If
0:(c) d gte="an operation of type II, multiplying the sth row by ¢,
O,—(c‘l)?rgstores the original matrix. If O4(k) denotes an operation
of type T1I, adding % times the Jth row to the tth, 9;;(—k) restores
,ﬂ\)’(}'\original matrix. In brief, for each elementary row operation ©

NtHere is another of the same type which “undoes” the effect of @,

It is profitable to observe that eleme

matrix A, use for F the matrix obtai

matrix I.. In the example given in Section 3-1, if we wish to inter-
-

* That is, 81y nonzero scalar,
ew towards a later stituation.

The wording of T has been chosen with 5
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change the first and second rows, we do this to I, finding a matrix
Iz, then calculate Epd:

0 19 i -1 -1 —4

E12= 1 O 0! Ele: I. —2 3 6 .
0 01 2 3 5 23

To add —7 times the second row of B (in Section 3-1) to the third
row, do this to I;, obtaining a matrix

1 00
Eo(-D=[0 10} KoY
0 -7 1 . O ’
then caleulate - { s

1 -2 3 6
Ex(-DB=[0 1 —4 -10|=C%
S0 0 27 81N

£

To multiply row 3 in C by 3%, do this to Is fisste
Loe ey
Bz =0 1",:},0“ 5
0 0757
then calculate “. N
: AN -2 3 6
Es(z7)C. € 1 -4 -10¢
xvlo o0 1 3

Luymea 3-1. i’to\"?e?fo:rm an elementary row operaiion O on an

n X & matriz A galculate the product EA, where B is the malriz ob-

tained by performing O on ..

To prm{xﬁw e lemma, let A be partitioned into its rows Ay, ..., Aa,
so thagedeh row of EA is a lincar combination of these rows as
asgéttod in Theorem 1-5.  Notice that row h of I is the unit vector
U, fd that '

upd = A

If © is the opera{;ion 9y interchanging rows ¢ and j, in the matrix &
we find that
row ¢ = u;, TOW J = Ui
Then in £A
row i=ud = A; Towj=wd=A4;
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as desired, and if & # 7, j, row h of EA is wpA = A, This proves the
lemma for operations © = 0;;.  If @ = 9,;(k), then in E
row ¢ = u;+ ku;, row h = u,, (h # )
It follows that row & of EA is A4 if k # <, and row 7 of E4 is
('H.,‘ - ku,)A =uwA+k- qu
) =A;4%- 4,
as desired. If © = ©:(c) we must multiply row ¢ of A by ¢ &Men
E is the same as  except for the element ¢ as the sth (liztgnzml\t{vnw::t;
and it is elear that EA is the same as matrix A, exceptedtnthe o
that ¢A; is the ith row of EA. R by
Any matrix B obtained by performing a single.feiémentary oW
operation on [ is called an elementary matriz, Ter the operations
Os5, O:{c), and 04(k), let the eorresponding elementary matrices be
denoted by £y, Eie), and E,,(k). Then Y,
(2} BB = L\

that is, if starting with 7 we interchafgeth and jth rows, then on the
result perform the same interchange, we get back to 7, Similarly,

3  EdeE(QSYT = BB,

CY I Bi(=R)E; Ry = I = Eiy(k)Ei (k).

These equations (2), (3)i<and (4) may be interpreted thus: Given an
elementary matrix %Qihe’re exists a matrix D such that DE < [ = &1,

Dermvrrion LOW matrix 4 is said to be nonsingular if there is a
matrix B shekithat

D BA=I=4B,

Any, teh matrix B is called an tnwverse of 4. If there is no such
mathx B, then 4 is called singular.

~(To say that 4 has an inverse is to say that 4 is nonsingular.
\Many matrices do not have inverses, However, the remarks above
the definition prove

. v THEOREM 3-1.  Every elementory matriz has an tnverse, which is
also elementary.

The size of a nonsingular matrix 4 is not arbitrary. Suppose that
4 18 n X s, 50 that the equation 4B = I implies that 7 = /,. Then
B must be s X n. But also BA = I, and BA is s X 3, 50 that s = n.
This proves the first part of the next theorem,
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TupoREM 3-2. If A is nonsingular it must be square, and s
inverse 15 unique.

To prove the last part, let C' and B be mverses of A. Then
C(AB)=CI=(=(CA)B=IB=B,
50 that :
C = B.

The inverse of a matrix A is denoted by A7 .
Attention is called to the following useful properties, to be verified
in the exercises. If A and B have inverses, so do AB and A’, 4nd

G @Bp7=pB4T, (A)7=@Amn O

Stated differently, a product of nonsingular matrices is nﬁﬁﬁi‘ngula.r,
arid the inverse of the product is the product of the invefeés in reverse

order. Also, the transpose of a nonsingular matrix.ig nonsingular,
and the inverse of the transpose is the transpose Sf;the inverse.

9% ¢
\s.
N\ 3

ExuRcIses

1 If R

1 a8
A=[i4*5 g1
L7V8 9

use matrixﬂmultiplication to ealeilate Oped, Cua(—2)4, 0:(2)4, where A
denotes the result of perfokgé(ﬁg operation © on 4.
2. Write the inverses.of the 3 X 3 elementary matrices B, Fas(5), Bs(2),
and verify each inverse B by caleulating the product EE! = Is.
*3. Prove the fo hiu 45 (5} for the mverse of & produet and the inverse of
the transpose of-alfhatrix.
x4, Tf A; isann X n nonsingular matrix (@ = 1, ..., 7), state and prove
& formulg for (A -+ A1 in terms of the matrices 4;7%.
5. Let d be a square matrix. Prove that A does not have an inverse if
ar fme;W 'of A iz a zero veetor, or if $wo rows of A are identical.
%6 MFor each positive integer 7 define A~ = (A7), 4 being a nonsingular
matrix, Also define A% = I. Then prove the laws of exponents: A7A®
= A+ (A7) = Ars for exponents 7 -and s which are arbitrary integers.
*7. 1f A commutes with B, and A i nonsingular, prove that A~ commutes
with B.
%8, Let V be a subspace of V.{F), whose vectors are to he written as
columns. Let 4 be an n X% matrix over §. Prove that the vectors AE,
with § varying over V, form & subspace of Va(F), and that this subspace has

the same dimension as V if 4 s nongingular,
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3-3 Row equivalence. A matrix B obtained by performing a
succession of elementary row operations on a rectangular matrix A
is said to be row equivalent to A. When it is necessary to make clear
that & is the field of scalars for the matrices concerned und thai the
scalars for the row operations of type II and type III are (o be
chosen in ¥, we say that B is row equivalent over 5 to A,

The investigation of how far a matrix may be simplified by cle-
mentary row operations may be reduced to the following quUespgn:
What is the simplest matrix in the class of all matrices row couitent
to A? The answer varies, since the word “simplest” is &Q}j\wt fo
personal interpretation. One common answer is given dow. The
phrases zero row and zero column mean that every element of (he row
or column is zero. A nonzero row, then, is a row $ith it least one
nonzero element. \\

THEOREM 3-3. Every rectangular matriz ANs row equivalent (o
matriz B in which \’ \
(a) the first v rows, for some v = ONGPe nonzero and all remaining

rows, if any, are zero; « \,
(b) intheithrow (i=1,2, . ..3.’,::-") the first nonzero element is eyual
to unity, the column in which gbbecurs being numbered ¢,;

€) 6 <ty < v er gy Y Tl
(d) n column e; the t{n,"ly nonzero element 4s the 1 in row <. \
An example of a s@ri?c with these four properties is
01 35001 3
N7 00001 0 42
s B=f0 0000137
\\ 00000 O0O0CO0
0000000 0

:'I{qﬁrove the theorem, let ¢; be the number of the first nonzero
\”Sqlunm of A. (If there is no such column, 4 = @ is already the de-
ired matrix B.) In column ¢, a nonzero element occurs in some row,
and if this is not the first row it may be interchanged with the first
_Tow (an operation of type I). This nonzero element, which now lies
in row 1 and column ¢, may be converted to unity by an operation of
type II. I any other row, say the Jtk, has a nonzero element in
column ¢;, this element % can be changed to zero by an operation

On(—k). In this way all of colymn ¢1 can be made zero, except for
thq 1in row 1,
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If in the matrix Ay thus obtained the rows below the first are all
gero, the proof is complete, and Ay is the desired matrix B. Other-
wise, choose the first column of A, which has a nonzero element ¢
below row 1, and let ¢, denote the number of this column. By an
interchange of Tows, column ¢ can be made to have this nonzero
clement ¢ in row 2, and ¢ ean be converted to 1 by multiplying row 2
by ¢t All other elements in column ¢, ¢an now be made 0 by adding
suitable multiples of the second row to the other rows. ‘Throughout
these operations, column ¢, does not change its appearance at all. *

A repetition of this process eventually leads to a stage in whidh
column ¢, for some r, hag been made all zero except for an elefnont
unity in row r, and cither row r is the botfom row or every oty pelow
it is zero. 'The matrix then at hand is the matrix B of T lgeégem 3-3.

CoRrorLARY 3-3. Let A and B be the matrices @“‘\i‘heorem 3-3,
and let A1 and By be the submatrices of A and B, réspetiively, oblained
by deleting the last columns of these matrigesy” Then By is row
equivalent to Ay, and Bs has the properties (@_ d).

That B, is row equivalent to A1 18 evitent from the definition of
row operations. It may have a sxgml}ei‘ number of nonzero rows
than has B. This would be true, ik example, if B were the identity
matrix. Each of the properties {a) through (d) is clearly true for By

o\ Exencises

)
x1, Let 4, B, and € bé\Q\% s matrices over ¥, Prove that
(&) A is row equivalent to A.
(b) If A is xo& gquivalent to B, B is row equivalent to 4.
(¢) If C %s{qw equivalent to B, and B to A, then C is row equivalent

to A\ &
2. For e@sh of the following matrices 4 over ® find the corresponding

matrix B‘ of Theorem 3-3:

£\
12 8 101 4
N\ [456]:[2012],
7 89 -3 121

3. Prove that the matrix B of Theorem 3-3 is uniquely determined by the
given matrix A.

[T S e ]
— % = bD
£ = G0

. 8-4 Row space. If A is an nXs$ matrix over ¥, its rows are
vectors belonging to V(). All n-rows of A then span a subspace ¥V
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called the row space of A4 ; the dimension of ¥ is called the row ran/:
of A. In this and the following sections we begin to reap the profits
from Chapter 2.

Notice first that each lHnear combination of the rows of A with
coefficients g1, . . . , g is & matrix product G4, where G = (g, . . ., g.),
and the fow space V of A is the totality of such products G4 as ¢/
varies over V.(3). Since (Theorem 1-5) cach row of a product F.!
1s one of these products G4, the rows of 4 lie in V. Then Ghewr
combinations of the rows of 4 are simply linear combigwtions of

vectors belonging to V, so that A\

(6) row space of PA < row space of A.(n.}“\
This is the first part of the following result. \:

Lemuma 3-2.  The row space of a matriz produdt PA is contained in

that of A. If P is nonsingular, the row space of PA coineides with
that of A, AV

In the last part of the lomma, P h&dn inverse P-1. If the result
in (6) is applied with P4 as the'given matrix and P! g5 the left
multiplier, N

row space A = row space P-1(PA) = row spuce PA,

When combined with (6} this inclusion proves that 4 and PA have
the same row space \ ~/

Since elementafy row operations are accomplished by left multipli-
eation by mat-r\icés having inverses, Lemma 3-2 hag the following
immediate qg@sequence.

\M
. THEO%{EM 3-4.  Elementary row operations do not change the row
space of a matrix,

(A matrix B in the simplified form of Theorem 3-3 has for its row
\zank the number r of nonzero rows. For, suppose these row vectors
are designated in order by &, ..., %, and suppose that by 4 oo
+ k& =0. The aith coordinate of this vector must be k; by the
fact that & has a 1 in column ¢ and all the other £ have zeros there.
Hence &, = 0, and in similar fashion every k;=0. Thus the row
space of B is spanned by r vectors which are linearly independent, so
that these vectors form a basis, and r is the row rank of B. By the

last theorem this is also the row rank of any matrix 4 row equivalent
to B. Thus
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TuroREM 3-5. The row rank of @ mairiz A over F is the number of
nanzero rows in the row equivalent matriz B of Theorem 3-3.

We have not proved that the matrix B of Theorem 3-3 is uniquely
determined by the given matrix A, but Theorem 3-5 shows that the
number of nonzero rows in B is unique; it is the row rank of 4. In
fact, B itself is unigue.

EXERCISES
1. Is the converse of the second statement in Lemma 3-2 true? Hint: Uge
9 ¥ 2 matrices over B for examples. : \ \)
2. Let a subspace V of V,(F) have dimension 7. Let o, . - ., cabelong
to ¥, and let M be the s X n matrix having a: as it ith row, £ &4, .., &

Show that o, . .., as span V if and only if M hasg row rank r\
3. Prove that the following matrices have the same row gpace V, then find

g bagls for V:
N

2 34 4 2 477
[0 1 1) |2 0 ah”
2 -1 90 2 T\8

*

" 8.5 Solution of linear systems. . féihée elementary row operations
are preciscly the operations empjlg:}yed in solving systems of simul-
taneous linear cquations, Thebrem 3-3 may be applied to such sys-
tems. Consider the systemn8X = K, that is,

N\ | _

(7} Ecdg‘x:‘:ks- (i=1,...,n)

P = : :
col (xy, . . .,&S)Qis the ecolumn of unknowns, and K =col (&y,..., k)
is the golumn of constants. Let A denote the n X (s+1) aug-
me-&fqd\'?’ntitm'x '

O A={(C K)

of the system, obtained from C' by attaching the column of constants
as an extra column. We shall prove :

Ilere C = (c@kti}!"the n X s cocfficient matrix of the system, X =

TrEorEM 3-6. A system of simultaneous linear equam'ons'has a
solution if and only if the rank of the augmented malriz equals the
rank of the coefficrent matriz.*

* Here and elsewhere the term row rank is shortened to ronk.
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As we have seen, the system may be reduced to one whose aug-
mented matrix has the simplified form described by properties (a)-(d)
of Theorem 3-3, the new and old augmented matrices having the same
rank r. Corollary 3-3 then assures us that the new and old coefficient,
matrices are row equivalent, hence have the same rank, ¢, and that
the new coefficient matrix also has the properties {a)—(d) of Theorem
3-3. In proving the theorem above we may assume at the outset
that the matrices are in the simplified form of Theorem 3-3. Then
(Theorem 3-5) the row ranks of € and A = (', K) are their numbéds
of nonzero rows. Since each nenzero row of ¢ is part of a nenzero

AN
row of A, we have $ N

r = row rank of (€, K) = ¢ = row rank of CAv

Suppose, first, that r > ¢. Then row ¢+ 1 in C,is‘{'\zer{}, but row
¢+ 1in A is not zero. Thus equation ¢ + 1 hag th&form

0x1+ e + ng = -"i:c+1 7= Q.‘
Bince this equation cannot be satisfied by a / Ehoice of the unknowns,
the system is dnconsistent, that is, has ng“gution.

We now take up the only remaining possibility, namely that r = ¢,
and will find in this case that the diffieulty above does not oceur. By
properties (a)—(d) of Theorem 33 there are r unknowns

..x‘;l‘l:" v ey
such that =z, oceurs X\fitllgnonzero coeflicient only in equation 7,
this nonzero coeﬁicie%'\ eing unity. An example of such a system
is the following: \,

Ot ten =g
..\'..' Ts+ X = l,
:n.\.;' xa — 3
) \ o
Here welltave r = 3 = ¢ and
\o & = 1, (;2=3, oz = 5.

‘I{\%é bring to the right the terms containing those x; with j different
from the numbers 1, 3, 5 ahove, the system becomes

r = 2-— 5272 - 63!’;4,
(8) .3’53 =1- Xy,

Xz = 3
Thus we have. solved for z;, ®;, and z, in terms of the remaining
unknowns. which may he called parameters; all solutions (z,, T2, T,
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%4, %5) are obtained by assigning arbitrary values to the parameters
2, and 2, then determining values of z, x, and 25 from equations (8).
The system is surcly consistent, that is, has a solution.

These ideas clearly carry over to the general case. Let the terms

containing those unknowns z; with j # ¢, ..., ¢ be transferred to
the right, so that the left side of equation ¢ is merely the term
2 (i=1,...,7). Wehave then solved for

Loy v« o9 Loy

in terms of the remaining unknowns, which may be regarded as pa~
rameters,  The system is consistent, and all solutions are found by
assipning arbitrary values to the parameters and determining, theé
values of ., ..., 2. This completes the proof of the thgq’g{efh.

A system (7) is called homogeneous if all of the constanp terms k;
are zero.  The consistency of a homogencous system.ﬁﬂguaranteed
not only by the fact that its augmented and coefficient matrices have
the same rank, but alse by the fact that it has the {&]iltion (T1y .. ., &)
= (0, ..., 0)in which every z; is zero. 'Thig golution, the zero vector,
is called triviaf. Thus the question of impowtance for homogeneous
systems concerns the existence of a nonttivial solution. By con-
tinuing the analysis above we may prp;ve“ the following criterion.

CoroLLary 3-6. 4 homogenesi{é’ s:ysiem of linear equations has @

nontrivial solution if and ondy if the number of unknowns exceeds the

row rank of the coaﬁciqnt grgbriz.

As above, let r denot-eﬁ;a common rank of the coefficient and aug-
mented matrices, and et s denote the number of unknowns. There

are r unknowns
& Bogy - - vy P

for which w‘&ﬁ'ajr solve in terms of the remaining unknowns or param-
eters x;, j‘f’.’any. There will actually be some of these parameters x;
lJl‘O\iide’i}:ﬁhat s > r. Since arbitrary values for thesc parameters z;
formt, fia-rt of a solution, we take these z; equal to 1 and have a non-
trivial solution. Thus the eondition s > r implies the existence of a
nontrivial solution.

The only remaining possibility is that the r special unknowns
Xy, .+« ., %, shall be the full number of unknowns, that is, that s = 7.
In this case no unknowns remain to be transferred to the right side.
Morcover, by property {c) of Theorem 3-3,

g << <t =T



N
-
Y

48 EQUIVALENCE, RANK, AND INVERSES [omar. 3

It follows that
a=1, e=2 ..., ¢=r

The ¢th equation beging with the term Zo; = x4 and contains no term
%o, # 1, by property (d) of Theorem 3-3. Thus equation 7 contains
only the term x; and must be the equation

@y = 0, E=1,...,7

The assumption that r = s thus leads to the conclusion that onl¥ the
trivial solution is possible. This covers all the possibilitios anci Lom-
pletes the proof. A

\J
ExERCIsES N

1. Bolve each of the following systems by reducing the “a;ugmented matrix
of each system to the siraplified form of Theorem 33

no— x4 T3 = 3,

(u) { 28+ @y 4+ 29, f\\o’;
321 + 22y — = 0.

n — g + $3 =3

{b) 23 ‘F‘ai‘{z"‘f' 213 = y
xl..—fs:?xg — X3 = 0.

{
(© {2&: ¥ 2 + 5 =8
< $1+$2+3.’.C3=10.

\

 {
¢EN 2$1+$2+ Z3=0,
‘\N) { o+ w + 32 = 0,

2. Without finding"any solutions, show how to prove that the system {d)
in Exercige 1 ;{1{1}31& have a nontrivial golution,
3. Wit-hg:.@:s lving, determine whether the following aystem hag a non-

trivial SQI{\tiﬁh!
&L
TN x1+x2+x3 =O,
N £t oz = (),
<\ 7 L= 23— 23 =0,

) 4
*4. Let the vector X, be a fixed solution of the system (7). Show that all
solutions of the system are given by Xo+ X, 03 X & varies over all solutions
X of the corresponding homogeneons system, CX = 0,
-8, Without atfempting to solve, prove that the following system over Gt
is inconsistent: :

o Bt omy =2
Bt o gy =1,
T A= By — Buy = 1,
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Then use thie ~olition process of Lixercise 1 to see how the inconsistency arises
in the last sienpatiied equation.

6. Suppuose it the coeflicient matrix of a system of # linear equations in
s unknowns Lo row rank n. Prove that the system is eonsistent.

7. Suppese thad asystem OX = K of » linear equations in n unknowns
has & wnique soluiion, that is, that there is one and only one vector X satisfy-
ing the cowliiion (*Xy = K. Prove that the system remaing consistent no
matter how 1 vector A of constants is altered, and that each system ob-
tained Dus caly one solution.

3-6 Celumn eperations. The columns of an »n X s matrix A over
¥ are vector- in V,(F), and the subspace which they generate js(t’he\
column smpec= of 4. lts dimension is called the column rands of 4.
Element:ey colrmn operations may also be defined as the interehange

of two colinins, (he multiplication of & column by a scalar. hich has
an inverse. und the addition to one column of any sealarmultiple of a
different eoiumn.  The symhols Y

(H COy;, eo,le), eeif(k).‘\:'

will denote these operations. The first of Jhe symbols (9) means
that column 7 and column j are to bedinterchanged. The second
symbol indicates that column ¢ is torke multiplied by ¢ The last
gymbol in (4 indicates that we aré %o add to column 7 the product &
times column j. Each of thereperations (9) determines a unique
corresponding row Operat-iqtzy-%* simply omit the €:
Qo © O
O @oide) > 0ile),
¢ ’:\ b eey(k) & 0:5(k)-
All of the thQ’,;;}ihg theory of row operations (Lemmas 3-1, 3-2,
Theorems 3-318-4, and 3-5) can be paralleled perfectly with column
Opera'oions.';.: ome of these parallels are listed below.

LEM;&-IA\’ 3—3. (i) Fach elementary column operation GO on arbitrary -
7 XA matrices A can be achieved by multiplying A on the right by the
matriz I which 1s obtained by performing €© on Ls. Moreover, E 15
the transpose of the matriz which effects the corresponding row opera-
tion © by multiplication on the left. (i) If @ 8 nonsingular, the
column spaces of A and AQ coincide.  (i1) Elementary column op-
erations do not change the column space of ¢ matriz.

Althongh these results, and also the column analogues of Theore‘ms
3-3 and 3-3, ean be proved in the same ways as the corresponding
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results for rows, a simpler device is available. The process of trans-
posing a mafrix can be used to prove these ‘“ column” resu.lts as conse-
quences of the corresponding row results. To prove (1) note that
the columns of A appear in A’ as rows. If we perform © on A’, then
transpose, the resulting matrix (94'Y is the desired matrix oA,
But operation © can be achicved by multiplying on the left by un
elementary matrix 5y, so that

@O = (Eyd') = AE], Q

This shows that operation €@ can be achieved by multipl'rc@sion on
the right by the matrix £ = £{. Taking 4 to be the ideéntity matrix
Now gives )

a
S

el =1E=F, w;\('
so that ¥ is in fact obtainable from 7 by paiforming operation €.
This proves (i). PN

To prove (i) note that the column_ spaces of A and AQ are, re-
spectively, the same as the row spases of A’ and (AQ) = QA"
Since ¢’ is nonsingular, these sp%eeé"coincide by Lemma 3-2, com-*
pleting the proof. Property (iiﬁ)z 18 an immediate conscquence of
(i) and (ii). GO

We have defined clemenfary matrices as the matrices obtained by
performing single elemefitiry row operations on an identity matrix.
If column operations had been specified instead of row operations, the
class of matrices ’30\&)nstructed would coincide with the class of ele-
mentary matricesas originally defined. To prove this assertion we
refer to the gedond sentence of (i) in the last lemma, which informs us
that the W class consists of the fransposes of the matrices in the
original(class. However, each elementary matrix E;; or Ei{c) is equal
to it€ own transpose, To illustrate the situation for Bi(k) take the
ﬁcﬁlg’wing 3 X 3 cage: '

O 10k
W) =10 1 0= Buy.
00 1

In generz?,l, E i#(k) is an identity matrix modified to have the element k&
in t-.he (%, ) place. Hence its transpose has this element % in the
(4, 7) place and thus equals E;(k). This proves the assertion above

that elementary matrices are definable in terms of row or column
oOperations,
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Danger! Do not conclude that cach elementary column operation
on an arbitrary matrix A may be achieved by performing suitable
row operations.  Prove that the second of the matrices

ool [6 ol

is obtainable from the first by an elementary column operation, but
not by »ny succession of elementary row operations whatsoover.

Exsrcises .
1. Do the problem stated immedistely above. RAY,

2. Prove (iii) of Lemma 3-3 by the method illustrated, avoiding us’e,?)f (ii).

3. State carefully the column analogucs of Theorems 3-3 and B=5.

4, Lot A = (a) bea general 3 X 3 matrix, By multiplyin;i’by u suitable
elementary matrix E add k times the third column of 4 tmiﬁs first column.
Then ghuw by direct multiplication that E’ effects thalediresponding row
operaticr, / \\ 7

.v3-7 Equivalence. Ilementary row and\golumn operations will be
referred to simply as elementary operations” Any matrix B obtained
from 4 by performing a succession,o:f elementary operations is said
to be eguivalent to A. Then BujS“equiyalent to A if and only if
B = PAQ, where I’ and @ are protucts® of elementary matrices.

Evidently (1) each matxik ¥ is equivalent to itself, since ©1(1)
performed on 4 pl‘t:)duc§'\:‘11~.t Morcover, (2) if B is equivalent to A,
A is also equivalent tpBand (3) if C'1s equivalent to B, and B to 4,
then € is equivalent’ $0°4. These properties are uscful in many ways.
For one thing, b§ ¥2) we no longer have to distinguish between the
assertions that @ is equivalent to A and that A is equivalent to B.
Also,if A %@U are both equivalent to B, they are equivalent to each
other, asghe can prove easily. Thus the phrase “is equivalent to”
has ¥éry much the force of ““is equal to.” .

Teb us look at this matter S0CE Tnore. Consider the class of all
n X s matrices over 5, n and s being fixed. Equivalence i a relation
between ordered pairs of matrices in this class: given A and B, either
B is in the relation of equivalence to 4 or it is not; although actual
testing in numerical cases may be difficult, there can be no doubt that
careful investigators will get the same answer. This relation of

* Tt is understood that the “products” may have only one factor. ~More-
over, P or { or both may be I.
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equivalence, to repeat what was said above, obeys the following three
laws:

RerLExve Law: Each matrix A is in the relation to itself.

SymuETRIC Law: If B is in the relation to A, A must be in the
relation to B.

Trawsmrive Law: If ¢ Is in the relation to B, and B to A, then ¢
must be in the relation o A. '

Derxrrion 2. Suppose a relation is defined on a class of matri(ks

in such a way that for each ordered pair of matrices in the glagd the
 relation either holds or fails. Then if the relation obeysthe reflex-

ive, symmetric, and transitive laws, it is ealled an 1%&3’: relation.”

Eqguivalence is but one of many R8T relations to l)é’ studied in this
book. The first major result on equivalence is aI‘I;}ust at hand. It
is begun in Theorem 3-7 and completed in Thebrem 3-11.

TuroreM 3-7.. Each matriz A is equUIDG e-ﬁ\ o & malriz B, tn which
V%"{or some tnleger v = O the first r elementson the diagonal are 1, and ali

. \\other elements of the matriz are 0. . gmh the row rank and the columyr

" rank of B areegual tor. TR T T

Tor proof, start with the s\un lificd matrix PA of Theorem 3-3.
The columns ¢, ..., ¢ of LA all of which.are unit veetors, can by
column interchanges be bxdught into the first # positions. This gives
a mafrix of the form\’\‘ - s

|:Ir D:I
0 0

where the O}sdenote zero matrices of appropriate sizes, or are entirely
absent if £33 the full number of rows. The matrix D can be converted
t0 0 byadding to its columns suitable multiples of the first r columns.
Thisigives the mutrix B of Theorem 3-7. 1t is clear that B has
'&:\ilﬁmn rank = row rank = ». ;

N/ two attermpts to reduce 4 to matrices fulfilling the description of
B in Theorem 3-7 led to “answers” B, and B, they could differ at
most in their numbers, v and r, of ones on the diagonal. That
i = 13, 80 that the integer r of Theorem 3-7 is uniquely determined by
the given matrix A, will be proved after tho concepts in the next
section have been developed. '

* This is coramonly called an “equivalence relation,” but in the present
context such terminclogy would he confusing.
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. ExXErRCISES

#1. Prove the reflexive, symmetric, and frapgitive laws for equivalence.
9. Tor cach of the following matrices 4 find the correspending matrix B

of Theorem 3-7:
1 2 3 2 4 8 8
3 2 1] |1 0 2 0f
111 3121

In ench case find matrices P and @ such that PAQ = B, where P and Q) are?
products of clementary matrices. N
3 Lot .1 be o matrix on which we wish to perform one row operation‘and
one coburia operation. Show that the same result is obtained regafdless of
which operntion is performed first. Hint: Perform the opemtiogshy matrix
multiplication. AN
4, U A and ¢ are equivelent to a common matrix, pliowfe&hat they are
equivalent to each other. Can this property of cquivilbnee be generalized
to any RAT relation? x.\\,‘
, 3-8 Null space. If Aisann X s mathxaver &, there may be an
s X 1 matrix X = col (@, ..., @) overd sach that

(10) AX 20

For example,

121 \ 0
A = [2 |1 ;\"172‘= eol (1,1, -3), AX = [0]
In computing AX ene should think of A as partitioned into its
columng AW, % whenee (as in Theorem 1-5)

" ’t\“ AX = 23111. O +xa-4(")-

&

The vg@}sé X belong to V(F), regarded throughout this section as
a set of ealumns, and the totality N of such vectors X satisfying (10}
will Ke)shown to be a subspace of V,(&). Fimst, N contains at least
one vector, the zero vector. If X and Y belong to N,

AX +Y) = AX +AY =0,

and N is closed under addition. Last, if k is any scalar and X lies
n N,

-y

A(RX) = R(AX) =0,

80 that kX lies in N, and N is a subspace. This subspace is called
the null space of A and its dimension is the nullity of A. When
convenient we shall write N{(4) for the null space of A.
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THEOREM 3-8. Let A be the coefficient matriz of a system of n
homogeneous, linear equations in 5 unknowns. If A has nullity o,
the syslem has g tinearly independent solutions X,, ..., X o Such that
every solution is a linear combination mX: + -+ + a,X,, and every
such combination is a solution.

The equation (10) is a system of homogeneous, linear equations in
Ty, - .., &y, and N is simply the totality of solutions of the systo\m.
The theorem follows from taking X, . . . ; A ¢ a8 a basis for N

Turorsv 3-9.  For any matriz A, column rank + _nul{?_}t;,f\;wﬁ:ﬂ;bf. r

of columns, - S

The 2 X 3 matrix 4 in the illustration above has,‘céﬁxmn rank 2
and number of columns equal to 3. Thus its nullitymust be 1. Ty
general let A be n X s and let its nullity be ¢ ~Phen its null space
N is a subspace of V(%) and has a bagis vy 8 Pe- Bince this set is
linearly indcpendent, it may (Iheorem 2—'\3}.\)0 extended to a set,

(11) Ply v v vy Py Pla"t"‘:’ Pry
. which is a basis of V,(F). Then N
(12) - el = s,

and it remains only to show that 7 is the column rank of A. Every
vector X in V() may E){’written in the form

£ {'. ) G r
. X = D awit 2 bioi,
e =1 =1
whence, sinceageh product Av; = 0,

\\HX =ZAbjp; = b{dp) + -+ + b{(Ap,).

Since.{ti\is an arbitrary vector in the column space of A, this equa-
tion :shows that the r vectors Ap; span this column space, These
,Y€ctors also are linearly independent. For, i

N Bldp) + - + k. (dp) = 0,
then
AE=0, t=kip+ - +Ep,
80 £ belongs to N. Then £ 1s a linear combination
£=Zhy; = Tk;p,.

This property violates the unique expressibility of vectors in terms
of the set (11).unless all the k;and h; are 0. This completes the proof
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that Api, ..., A4pr are linearly independent and thus a basis of the
colump space of A. Then r is the column rank of A, and (12) gives
the theorem.

This result has geometrical overtones by virtue of the fact that the
golutions of a system (10) may be regarded as the locus (in space of s
dimensions) of the system. Suppose, for example, that s =3 and
n =2 as in the matrix 4 below (10). Then the locus of the system,
AX =0, of two equations is a geometrical configuration of dimension

g=3—r Since the coefficient matrix A has eolumn rank 7 =2,{

the lovus is one-dimensional, a line. The student can verify this
assertinn independently of matrix theory by showing that the\'{;\m{ﬁ
equation: represent nonparallel planes, so that their intersection is a
line. 1/ #wore [, the two planes would coineide, and the ldcus would
be a plaus in keeping with the dimension formula ¢ ={v?‘ = 2.

LLesois 3—4.  f P is nonsingular, A and PA haup tie same column 3

rand. - X7, Nd

Since 4 and 1’4 have the same numbger"é Jof columns, 1t suffices
o show that they have the same null sggcé; hence the same nullity ¢,
for then (Theorem 3-9) both must hg}fe.ﬁhe same column rank s — .
It AX = 0, then (PA)X = P(AX) 80, so that the null spaces N(4)
and N(P4) of 4 and PA obey,the inclusion,

N £ N@PA).
By this very result \\
NPA) £ N(P'PA) = N(4),
AX
50 that N(A) bath- »ontains and is contained in N (PA). This com-
pletes the pgi)}fby the comments made at the outset.

*

R\ Ny LXERCISES
{F;inﬂ a basis for the null space of the matrix

31 —
4= [0 1 2]

Then give a formula for all the solutions of the homogeneous system
AX = 0.

2. State and prove the row analogue of Lemma 3-4.
3. The proof of Theorem 3-9 uses language which assumes that the null

space of A is not the zero space. Give a separate proof of the theorem in the
case in which this null space is zero.

‘0['90,9/ '

f@w.
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\/"3-9 Rank. The tools are now available for proving that the
column rank of any matrix is equal to the row rank.

Lemma 3-5. If P and Q are nonsingular, PAQ has the same row
rank as A and the same column rank as A.

By Lemma 34 the column ranks of 4 and P4 are the same, and
by Lemma 3-8, part (ii), the column ranks of PA and PAQ are the
same. This proves the “column part” of the lemma. The row
space of B = PAQ is the same as the eolumn space of B’ = Q%"

- Binee € and I’ are nonsingular [see (5)] the part of t-}lg*\lemlxla
already proved implies that B’ and A’ have the same colimnrranks.
But these equal numbers are the row ranks of B an({ A

TurorEM 3-10. The row rank of any matriz us, égual to the columit
rank of the madriz. ~— " T AT ——

Let A be the given matrix. By Theorem 837 there exist, matrices
‘P and ¢, which are products of elementdPy matrices, and thus arc
nonsingular, such that \

I 97 _

{13) PAQ &.’0’:“ O:I =B,
Both the row rank and the golimn rank of B are equal to . Then
(Lemma 3-5) r is both therow rank and column rank of A, as elaimed.

Although a matrix /4 faay have one hundred columns and only five
rows, its maximunkﬁhtﬁbcr of linearly independent columns is the
same as the corregponding number for rows by Theorem 3-10. This
fact is only superficially surprising, sineo the hundred columns would
belong to V(%) sc that a linearly independent set of columns could
include p,qzﬁlﬁre than five columns. For each matrix A the number
characterized both as the column rank and the row rank of A is
defindd to be the rank of A.

: @éi‘ each reetangular matrix 4 an equivalent simplified matrix (13)
<‘is~provided by Theorem 3-7, but we have not vet proved that B is
unique. The integer r is the rank of B, and by Lemma 3-5 it is also
the rank of A. Since r g thus completely determined hy A, B is
algo, as shown by (13) and by the fact that B or any other matrix

equivalent to A has the same size as A. This proves half of the next
theorem.

TuworeM 3-11.  Each matriz A 4s equivalent to a unique matriz B
of the type shown in (13), the integer r being the rank of A. M. oregver,

*
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o n X 5 malrices over § are equivalent if and only if they have the
same rant. '

If 4 and € are n X s matrices with the same rank 7, both are
equivalent to the same matrix (13), hence are equivalent to cach
other. Conversely, if 4 and € are equivalent, €' = PAQ where P
and @ are products of elementary matrices, hence nonsingular.
Lemma 3 3 then implies that A4 and € have the same rank. This
completes the proof of Theorem 3-11.

1f A is « matrix over a field , the rank of 4 has been defined as thel >
dimension of a certain vector space over §, namely, the row spage\o '
4. However, A is also a matrix over X for every field 3 containing
5, and the question arises whether A has the same rank oyer X as if
has over . "G

Corovvany 3-11.  The rank of @ matriz A over. ﬁ"tibe\s not change
when the field of scalars is enlarged. O
_ Suppose that over ¥ the matrix A is equig’l'e}xt' to B in (13), and.
that by usc of clementary operations ovér)the larger field 3 the
matrix A can be transtormed to a matrix Brof the type (13) but with
r ones on the diagonal. Then over th&scalar field K, A is equivalent
to both B and By, and the uniqqenéé% in Theorem 3-11 implies that

B =B, and thus that r =71 "
Ko \NEXERCISES
*1. Lot &, ..., E-be lili}ﬂ\l"t}" independent veetors belonging to V.(F}, and
let 3 be a field containing®¥. Prove that &, ..., £, are linearly independent

as vectors velonging € Va(XK).
2. Compute the'ranks of the matrices

\WV "
\[ 2 345 10], [_i s g]
‘\‘j:’.’ -1 -2 01 7 10 —
(@ hy~examining the number of linearly independent rows; (b) by examin-
i&‘ the number of linearly independent columus;: (c) by reducing each
matrix fo an equivalent matrix of the form (13}. .
*3. Show that the nullity of a matrix does not change when the scalar field
I8 enlarged.
4. Prove that every matrix of rank r is a sum of r matrices of rank 1.
5. Tot A beann X s matrix of rank 7 > 0. Prove that there are matrices
Band € such that Bisn X 1, Cisr X s and A = BC. Show that Band €
are not unique but that both B and ¢ must have rank 7. Hint: A has ¢

linearly independent rows.
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6. Bhow that A and A’ always have the same rank,
x7, Show that the rank of 4B is no greater than the rank of either factor,
8. Bhow that the nullity of AB is at least as great as the nullity of B, and
is at least as great as the nullity of either factor if B is square. Hint: Use
Exercise 7.

'8-10 Canonical sets. A set of n X s matrices is a canonical set
under equivalence if every n X s matrix is equivalent to one and only
one matrix in the set. Theorem 3-11 provides such a set. \

The relation of equivalence separates the class of all n X $ matrices
over ¥ into subclasses, cach subclass {A} consisting of-all“h X s
matrices equivalent to some given matrix 4. A canenital sct is
then constructed by choosing in any way whatsoever,h.single matrix
from each subclass. Theorem 3-11 points out a particularly simple
matrix to choose from each subclass. Moreoverit points out that
each subclass is distinguished by a single integer, the rank, common
to all members of the subclags. \’\

For n X n matrices the number of atrices in any canonical sct
under equivalence is #n 4+ 1. Why? _What is the number for n X 8
matrices? : o0

A canonical set for row equiydlence is provided by Theorem 3-3.
What remains to be done to e§mplete the proof of this assertion?

3-11 Left and right iti\%rses. An n X s matrix 4 is said to have
B as a left tnverse if BAN= I. In this case I must be s X s, and B then
must be s X n.  Similarly, if there is a matrix €' such that AC =1,
then C is callef\&l#ight tnverse of A. The matrix J in this case must
be # X n and)(“must be s X a.

P4

LeMuad3<6.  If A has both d left inverse B and g right tnverse C, A

is nonstngular and B = € = AL,

,..\Eﬁr'proof we simply form the produet BAC in the two ways per-
“mitted by the associative law:

(BAYC = 1.0 = C = B(AC) = BI, - B,

Thus B = €, so that this matrix is & “two-sided”” inverse of A, and
is therefore its unique inverse A1,

LevwMa 3-7. Let 4 be ann X s motriz. Then
(a) A has a left inverse if and only if the rank of A {s 5.
(b) A has a right inverse of and only if the rank of A isn.
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To prove the necessity of condition {a), suppose that B is a left
inverse: BA = I.. The rows of I, lie in the row space of 4 {Lemma
3-2) and are lincarly independent. Henee the row rank r of 4 is at
least 517 = 5, "The column rank is also #, so 4 must have r linearly
independent columns, and since there are only s eclumns altogether,
r= s whenee r = s,

Conversely, suppose that 4 has rank s. Then A has s linearly
" independent rows

Ao, Ao, ., Ao,

N

oA\
all belonging to V,(F), hence forming a basis of V.(¥). Forisirat
plicity we write \ 2

£= Ac,—- (J h\ 1: .' s S)
N .
Then all vectors in V,(¥), in particular the unit ve¢tdes w;, are lincar
combinations of &, ..., &, and therefore RN
(14) we=biky - + b{sgg'\" (i=1...,5)

for suitable sealars #;;. To construet, one #0w at a time, a matrix B
funetioning as a left inverse of A, leca:lI first that B must be s X n.
Then use in cach row ¢ the elemvn’cs Wi, ..., by located in columns
€y ..., 6 rospectively. All ophér positions in each row ¢ are to be
filled by zeros. Then row i 6ABA is given by (14), which is row
of f.. This proves that theimatrm B so constructed has the requisite
proporty. \

To prove (b) one may follow the pattern given for (2). A simpler
method is to use Pahéposes, taking into consideration the fact that
4 and 4’ have fBe same rank. Supposc 4 has rank n. The s X n
mutrix A4’ hat\ rank n (its number of columns) so that by (a) there
15 8 left invérse for A°. There is no loss of generality if this inverse is
denoted-by B’':

O par- 1,
Taking transposes now gives AB = I, and establishes half of (b).

he converse is an easy reversal of these steps.
One-sided inverses may not be unique. Example:

A= [é] B = (1., D).

Then BA = 1, although the block D is arbitrary.
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Exunrciszs

1. Prove the converse of (b} in Lemma 3-7, proof of which was not glven
in detail above. ’
2. Ii A has a left inverse B, prove that all left inverses of A are given by
the formula B + ¥, ¥ varying over all matrices (of the sume size as B) sucls
that ¥4 = 0.
3. Btate and prove the analoguc of Exercise 2 for right inverses,
4. Determine the existence of a left or a right inverse for each of the fol.le-

ing matrices over ®:
2 1 2 1 3 O\
[5 2]" [5 2 u:l’ (1, 2,3). b

3. If an n X & matrix 4 has a left inverse but not a right¥inverse, show
that # > 2. Then show that there is an s X » matrif/W > 0 such that
NA = 0. Hint: First find a vector £ > 0 such thapgA = 0.

6. Use Exercises 2 and 5 to show thut if a singulapahatrix hag a left inverse,
it has more than one left inverse, Hence, if A 113&«3, unique left inverse, it, is
nonsingular, RS

7. Bhow that A has a left inverse if and only if the null space of A is the
zero space, and A has » right inverse if andwohly if the null space of A’ is zeiv.

* R
%12 Nonsingular matrices. There are numerous tests for non-
singularity of a matrix. Wediegin with a theorem which is an casy

N

by-product of the last section.

Trworem 3-12. T fz?iénazri:c A has any two of the properties (a),
{b), and (¢}, it 1s honsingular: .

(&} A has o Jgfb inverse,

(b) A hasalright inverse.

() 4 sssquare,

If pr(};ie“?ties (a) and (b) are assumed, the conclusion is provided
by Lefarha 3-6. If (¢) and (a) arc assumed, 4 is 7 X n and {a) of
Lgrgmh- 3-7 shows that A must have rank n, By (b) of the lemma,
“Ahas o vight inverse as well ag a left inverse, hence is nonsingular,
\If (e) and (b) are assumed the proof ig similar to the previous case,

In contrast to matrices which are not square, if 4 square matrix A
has a “one-sided” inverse, say a left inverse B, it follows from
Theorem 3-12 that B is unique and in fact B = A4-1,

THeoREM 3-13. The Jollowing three propertics of @ matriz A are
equivalent;

{a) 4 is nonsingular,
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(b A s square and its nullity s 0,
(€) A isn X n and its rank s 1.

Sinee (Theorem 3-9)
nullity = » — rank,

it is elear that the nullity is 0 if and only if the rank is #, so (b) and
{c) arc equivaient. The proof will then be complete if we show that
(a) and {t) are cquivalent. For this we refer to Lemma 3-7. If A
is nonsingulur it is » X » and by this lemma its rank is n. If 4 15
7 X 7 and has rank n, the same lemma shows that A has both a et
inverse w11 n right inverse, whenee (Lemma 3-6) A is nonsingfar.

Tumoural 3-14. A matriz is nonsingular if and enly, if’}ﬁ is @
product of clementary malrices.  Two malrices Band A e equwalmt
if and only if B = PAQ, where P and ) are nonsmgulafr

If M i+ u produet E¥; - - - F, of elementary mdt@ées E;, then each
F; has un inverse, and the matrix ,,\

(15) L=E3- - E'—lET.v \

satisfies the equations, LM =T = METhus M is nonsingular.
Conversety, if M is nonsingular it d8 % X n and bas rank n. By
Theorem 3-11 M is cquivalent tosky*PMQ = 1,* wherc P and @ are
products of elementary matricgs,™ Then

(16) M P-g.

As (13) indicates, the mve§e of a product of elementary matrices is a
product of elementaiy; Saatrices. Then P, @1, and thus M, are
products of (‘lomeI\tary matrices. The final statement is an obvious
application of the#irst statcment to the criterion we have becn using
for E(]llchll(;Qﬁ{(

: THEOJ%@;\-I';:}—IF). A matriz A. is nonsingular if and only if it is row
eqifivglent to the identity matriz.

We shall refer to the matrix B of Theorem 3-3, which is row equiva-
lent to 4. This matrix B has r nonzero rows, where r is the rank of 4.
If A is nonsingular it is # X n and has rank 2, o that r = #n. Then
the  column numbers ¢; obeying requirement (c) of Theorem 3-3
must be

=1 t=2..., =M
-_——

* We gould express this fact by the equation M = PIQ = P@ and thereby
shorten the srgument. |
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Property {d) of Theorem 3-3 then implies that B = I,. Conversel-,
if A is row equivalent to I., we have PA =1, Then 4 isn> n
and has a left inverse, so that (Theorem 3-12) A is nonsingulir.
Another simple proof of this theorem can be made by a direct app.-
cation of the preceding theorem.

This result is rather surprising, sincc many matrices eannot e
reduced to their cquivalent canonical matrices of Theorem 3-11 Ly
row operations alone. An example: A\

! _T1 oo O\
A‘[] 1]’ B'[o 0] O\

Since A has rank 1 its simplified matrix of Theorgtnd3-11 is the
matrix B shown. The first row of B is not & linedreombination of
the rows of 4; therefore B is not obtainable by. rmy\opemt.ions alone.

The property in the last theorem furnishes otie'of the simplest ways
to compute the inverse of a matrix A whjcfm\has an inverse.  There
must be clementary matrices £; such thafy

I=E,-.EA.
Maultiplying on the right by 4-\gives
A7 =B 3B = (8, E)L

This equation is the c]uéit-o the method. Multiplying Ey ..., FE
in turn onto I may e’\fnferpret-ed as performing row operations on 7,
the same row operalions performed on 4 in reducing it to the identity.
This proves N
AS

THEOREMB™6. [f A is reduced fo the wdenlity matriz I by a succes-

sion of fol operations, the same succession of row eperations performed

on K produces A1,

N\ -
) Exmroses

\_ " 1. If a square matrix A has a left inverse B, prove that it has only onc left
inverse.

2. Bhow that an n X n matrix over & is nonsingular if and only if its rows
{or columns) form g basis of Vu(T).
3. Prove Theorem 3-15 as g corollary of Theorem 3-14,
*4. Let A be n X n. Show that 4 is nonsingular i and only if 4£ = Ay
for all pairs of distinet column vectors ¢ gnd 7 belonging to Vo).

5. _Use Theorem 3-16 1o compute the inverses of the following real
_ matriees, then cheek each inverse by multiplication:
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T2 17, 2 17,
STHHE CIHHE
0 1 2 2 -1 3
@i—-1 30 @1 o —1]
1 -2 1 0 —2 1

6. Vind the inverse of the following matrix of rational functions of »:

1
z+1
_2
oz 4+ 1) p \:\
7. Let 3 and 1, be real functions of a real variable z, and let their,ﬁcriv -
tives with respeet to 2 be dencted by yf and ¢, Use Exercise"ifo find 4
and y. if they satisfy the system of differential equations, , \

2N

o

Ad =

/

' 1
i i | y, = 625
2 D
¥+ e L 6(x ~L1)
*8. If a product @, - - @ of square rrmt;ig:és €); is nonsingular, prove that
every ; is nonsingular, N

ol

N

4

3-13 All bases of a vector spdce. We have seen that every vector
space V has a basis, and that if 1 has dimension s a bagis is an
arbitrary set of s lineatl¥_indcpendent vectors in V. In terms of
nonsingular matrices jﬁxshall sce how to determine all bases from a
given one. PAS.

Fivst consider/¥o(®). If the vectors in a basis are written as the
columns of q.@}t}ix A, this matrix is % X n and has rank #, since its
columns aredinearly independent. Theorem 3-13 then implies that
A is nogsingular. Conversely, if A is an n X n nonsingular matrix
aver ,5;1"}{3 columns form a basis of V.(F). Clearly, bases of V.(F)
cdn lso be characterized in terms of rows of nomsingular n X =
H&L&rices over F.

Ciiven a second basis of Va(&), its vectors may be used as columns
of a nonsingular matrix B. Then there is a nonsingular matrix P

over F such that
amn B = AP,

namely, P = A-1B. Conversely, if an n X n nonsingular matrix P
over § is given, and if one basis of V.(F) is given as the set of columns
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of a matrix 4, then (17) determines a matrix B which is nonsingular,
whence its columns provide a seeond bagis,

These simple observations may be generalized to apply to any
subspace ¥ of dimension s of Va(3). A basis of V may be written
as the columns of an # X s matrix A over ¥, the rank of A being s.
(Why?) If PisansX s nonsingular matrix over %, the matrix

(18) B=AP

is n X s and (the column snalogue of Lomms 3-2 D its columneshaee
coincides with that of A. Sinee this column space Is V amd "has
dimension s, the s columns of B form a basis of V., This shoWws how
a second basis of ¥ may be constructed from 4 fixed,basis and g
nonsingular ¢ X s matrix P. R N

Conversely, given the second basis (as well as thetirst) there are
1 X s mairices B and 4, whose columns constitue the new and old
bases, respectively. We shall show that B VA are related by an
cquation (18) where P is nonsingular. The 7th column vector N
in B is a vector belonging to ¥, hence is’a\linear combination of the
colurans &, ..., & of 4:

(19) N = ey + E{Cﬁ’fi;’ st By
Since an equation (19) holds ip;r'éach J=1, ..., s it follows that
B = AP, where P = (¢;)), al 8% s matrix. The roles of 4 and B in

this argument, muy be igterchanged, so that 4 = BQ, where Q is
§ X 5. Substitution pf.\iiP for B then gives

A= A(PQ)J

where PQ is anl@X s matrix over . This equation implies that
PQ=17,. (Bk(t..t-his is not trivial! The proof requires the fact that
the columns\df 4 form a basis of V. Why?)

Sincggi?s square and has a right inverse, it is nonsingular, Thig
completes the proof that B — 4P with P nonsingular,

AN
AN ) Exmromes

1. In the proof sbove show why PQ =T,

2. IetAbeannxs matrix over F and let V e & subspace of dimension

sof Vo(¥). Show that the columns of 4 form a bagis of Vif and only if thege
columns belong to ¥, and A has g left inverse,

3. Formulate the main result of this section g 4 theorem. Thep reformu-

late it as a true theorem in which rows of africes are used ag columna are
used in the text,
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3-14 Bilinear forms. Ifx,...,x.and w, ..., ¥, are two sets of
variables, o quadratic polynomial of the type

& f
(20) i=2 2 xay;
i=li=1
is ealled & titinear form in these sets of variables. It can be written
gs a linear combination of the y;,

F=hin+ -+ iy, fi= 2 ﬂifﬂ?f; £\

with eocflicicnts f;, which are linear combinations of the x§, und
also as [ = gy + - - + ga¥n with coefficients g; = Zauy;. (I X =

col (x5, ..., %), ¥Y=col (i, ..., %), and 4 = (@), fjs'g;nﬁst con-
venicntly written as the 1 X 1 matrix, K7,

&
21) f=X'AY, '“f:.\

where f has been written instead of (f). a\)
Bilinear forms are often reduced or simpl{ﬁ’?}i by linear substitu-
tions \

(22)

Ti= pati+ - Piabn, G=1,...,m)
Yy = gavr T WU dite. G=1...,9
To discuss these substituticns injfdaltrix notation let

T =col (.. \~;”tﬂ), V =col (o, ..., Vs),

P! = (pu), \‘“ Q = (gix)-
Although it may seeriy Iﬁuliar to indicate the coefficient matrix (pa)
as the transposc,_ofy another matrix P, this will simplify our final
formula. Subs@iﬁibns (22) may now be written as

fl

]

(23) ::{.* X=pP7, Y=gV
When tl}es'te\are employed in (21) we obtain
O f= X'AY = T'PAQV = T'BV,
\ ) B =PAQ.

Thus the linear substitutions (22) in a bilinear form amount to re-
placing the matrix A of the form by ’AQ, where P and @ are square.

Most often one is interested in substitutions which are reversible,
that is, substitutions (22) which can be solved uniquely for the #'s
in terms of the s, and for the v's in terms of the y's. This means
that there are matrices B and S such that

T = RX, v = SY.
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By (23} we find that
X = (PR)X, Y =)y,
whence
PR=1I, QS =1,

The square matrices P’ and @ then are nonsingular and sc is P

Conversely, if P and @ are nonsingular, the substitutions (23) are

reversible: ~
T=(P)y'X, V=gY.

The matrix"4 = (a:;) in (21) and (20) is called the matrig) of the
bilinear form. Apart from notation for the variables Ghe form is
completely determined by its matrix. The discussion'just given may
be summarized thus: Nonsingular linear substitufions in a bilinear
form f with matrix 4 yield a new form with matrix PAQ equivalent
to A, The problem of reducing f by nonsingildr near substitutions
is therefore identical with the problem :qf\\reducing a rectangular
matrix by equivalence. By Theorem 3T if f has rank r (that is,
if the matrix 4 of 7 has rank r), there’ares nonsingular linear substitu-
tions converting § to R\

by ‘Jr:' .. -+ Letrp.

«  Exurosis

3

I. Formulate the matri§problem whieh is equivalent to the problem of

finding nonshlgular'li@h substitutions reducing the bilincar form
f = T 2131?]2 + 35'-'13,’3 + Tolfs — Taifs
to Qs>
N\
'\1" ) thi + £,

2. Solve~the matrix problem referred to in Exercise 1. Then check by

actual s%stitutiim.

- -’ 3;'—1:5 Minimum polynomial and inverées. It was proved at the
“énid of Chapter 2 that CVELY square matrix satisfies a polynomial equa-
tion of the type

(24) At 4 kg__lz‘i:"'l + ... + klA =+ kaI =,
It is convenient to say that 4 is 2 “root” of the polynomial
(25) 98) =+ k@ 4 e Ly ko,

meaning thereby that (24) is true. Note the insertion of [ as a
multiplier on the constant term ko of (25) when % is replaced by A.
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The sum on Lhe left side of (24) would have no meaning if the last
term werc o sealar.  When 4 is a root of (25) we shall write gl4)=0
to represent equation (24).

Among !l nonconstant polynomials of the form (25) having A as a
rool there is one of minimal degree.  We shall prove that this poly-
nomial, called the minimum function or minimum polynomial of 4,
is unique.

Trapowws 3-17.  Each square matriz over & has @ unique minimumny

. o f
polynomial. A
. ¢\

Suppase that 4 were a root of polynomials P\ N

N

(26) m(x) = 2° + coy i - S0+ Gy |\

plx) = z° -+ do gzt + - A dix + do, i "\ 3
%
of the sime minimal degree. Then A would be 2 ron"t;,\of
(27) mlz) — plx) = (Com — de )" F -0 ji\\(f‘o — do).
If any term on the right side of (27) has notfgéro coefficient ¢; — di,
let ¢; — ¢; be the first such coefficient. Multiplying by the inverse
of ¢; — d; we find a polynomial of the fype {25) having A as a root
and having degree less than e, in déftance of the definition of ¢ as
the degree of the minimum pé’ijrnomial. This proves that all
¢;— d; = 0 and every ¢; = di, whenice p(z) = m{x).
A nonsquare matrix 4 hasgo minimum polynomial, since powers
AL, A7 cte ave not defimed”
T The minimum pelynomial of a square matrix 4 may be used to
determine whether @ Hias an inversc, and even to calculate the inverse
when it exists. 4 \J

e & - -
© JTEEORE M’:—\l& A square matric has an inverse if and only if the

constaptterm of its mintmum polynomial {3 RONZEro.

Lt (26) be the minimum polynomial of A, and suppose that ¢ # 0.
In'\the equation
(28) Art oAt - tadtal =0
We may subtract ¢ from both sides, then multiply by (—e)™, ob-
taining

bdet -+ bd =1,
where b, = (—¢)~ and b; = —¢:/%o fori=1,...,e—1. This equs-
tion may be factored:
A(beﬂ_e—l e -} blf) =]= (beAe—l A -+ blf)A.
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_The matrix in parentheses is the inverse of A.

Conversely, suppose that A has an inverse. If o= 0, equation
(26) beeomes '
A (A.e_'l + Ce_1/1.g_?\+ cen o+ 61[) =0

Multiplying by A~ on the left gives
At el =0,

an equation which conflicts with the fact that ¢ is the degree of &he
minimum polynomial of A. Hence ¢ # 0. A
{ N\

EXERCISES \

1. Find the minimum polynomial of the matrix PR

01 ;\\
00 v

2. ¥ind the minimum polynomial m(z) of the” yoal matrix

12
4= [3 4£|"'

given that m{z) hag degree 2. I poscﬂbic, use m{x) 1o caleulate 4%
3. Given that the matrix

n,’D 1 0
A=|100 1]~
“’\ ¢ b o«

has minimum polynom\@t‘ m(z:) of degree 3, find m{z). Then find a necessary
and sufficient condatwn on @, b, and ¢ for A to be nonsingular. Assuming
this condition te ho‘l(l find & formuh for A7 ag a quadratic polynomial in 4.

4. I A lﬁ‘sq‘blﬁ.l? prove the equivalence of the following four propertics:
(a) A 1s\ﬁgula1 {b) There ig a square matrix B # () such that B4 = 0.
() Thereds a square matrix ¢ # 0 such that AC = 0. (d) The minimum
polyﬂbmlal of A has zero constant term,

¢'5. "Tind the minimum polynomial of the real matrix A = diag (1, 1, 1, 2, 3).

\ hen find the minimum polynomisl of an arbitrary dlagona,l matrix
= diag (@, .. ., Ga)-



CHAPTER 4

DETERMINANTS

4-1 Definition. The use of determinants in the solution of systems
of two lincar couations in two unknowns is familiar to most students
of algebra.  Although determinants are not important for this pur-
pose, they do play o significant role in many theoretical investigations, N
We shall defiue the determinant of a general square mairiy. A
Lot A = (4;;) be an n X n matrix, and consider products .8 N
N

L 3

(l) a‘l'a'1a"2€2 st Gadgy PN
S %

in which there are n factors, one from each row of A'\';’I‘he second

subseripls \V

s - . * \
(2) 11, T2y -+ oy Un ,".\\"
z . W o
in (1) denotc some arrangement of \

(3) 1,2, .00 By ™

and (2) is ealled a permutation of EINY The number of such permuta~
tlonsisn!=nn—1) -1 and_this'is the number of products of the
type (1) which can be formedwfro‘rfl the given matrix 4. Notice that -
in each product (1) precisg;ky}one factor comes from each column and
one from each row. &N -

With each product1 construeted from the matrix 4 we shall
associate o {actonghich iz plus or minus one, that is, a power (—1)%
This “gign” ir.‘».‘@ie’th‘mincd hy the permutation (2) in a manner that
will be d{be\p@:d presently. Then the sur of all terms

&N\
“4) \ (—1) a0y -~ Dot

is eal}%ﬁ the determinant of A and is denoted by 141.
Hese ideas are borne out by the familiar formula

11 a2
g1 (f22

for the determinant of a 2 2 matrix A. The two terms are all

possible terms (1) that can be formed with » = 2. Ope term has the

sequence 1, 2 of second subscripts, and has been multiplied by (~1)°

= 1; the other has the sequence 2, t of second subscripts and has beep
69
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multiplied by (—1)* = —1. Notice that the first subscripts must be
in natural order before we take down the sequence of second sub-
scripts.  Beetion 4-2 shows how to use this sequence to determine
the signs (—1)*%

4-2 Transpositions. To discuss the sign {(—1), which is deter-
mined separately for each term (4), we consider ways of restoring
the sequence (2) to the natural order (3) by transpositions, that is,
interchanges of only two integers at a time. For example, the pérhu-
tation O\
{5) 1,4,3,2 e X\

N\

«can be restored to natural order by the following threef%,teps, each of
which interehanges only one pair of integers: y

() 1,4,2,3,
(b} 1,2, 4,3, O
(€) 1,238,427
We write £ =3 to denote the number of sleps, or transpositions,
which -have been used. Then (-1 = (=1)* = —1 is the Sign asso-
ciated with the permutation 1, 4582,
The restoration of (5) to, nafural order can be accomplished in
other ways; for example, by Interehanging the 4 and the 2. This

employs only one t1‘ans]{)siti0n, sof=1. Although this differs from
the first value of ¢, th€ ¥ipn is the sume:

(—1f = (~1) = —1.

Many other YQ’I&(’?S of ¢ can be found, but for the permutation {5}
all of t.hese.\\-‘a,lues will be odd.  This is part of a general rule:

€|
-

LemdA 41, The number of transpositions required to restore a
pe;ﬂ% atton (2) to natural order is not unique, but for a given permac-
akion it s always even or always odd.

<\} “To prove this lemma consider the following pelynomial in variables
[ P 1

P =] i)
= m) e @) @2 e (e m) e (e ),

Notice that the first subscript in each factor &: — z; is less than the
second. We shall study the effect on P of & transposition, inter-
changing only % and %, applied to the subscripts of the variables in P.
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That is, we shall replace % by @, and 2 by s, wherever they oceur
in P.

Let @ denule the product of those factors @; — &; of P involving
neither 25 nor wp.  Then @ will not be affected by the proposed trans-
position.  There will be one factor, T, — 2, OF Ty — &, involving both
hoand k as cubseripts, and it can be written as +(m — xx). Each
remaining faclor involves s OF Tk, but not both. The product of
those involving only z, can be written as +P,, and the product of
those involving only z; can be written as + P, where

I)fe. = H (xi - xh)) Pk = ]:[ (xj - :BF:)- "\‘\
izh, k Jrih k _ A\
Then A\
(6) P=+Q- Py P (an— ). D

AN,
For exumple, tuke n =4, h = 3, k=2 :

o= (rr — 22) (w1 — @) o — )@ — xs)@i>\“254) (23 — T),
Q = xp— Ly O :
Py (.’Cl - .’Bh) (.’134 — $}1) = -—(501 — ﬂ%sj(&b'a - 1"4),

Po= (1 — ) (s — L) = —'(131v 77’5}'?) (@2 — 1),

P = Q- (=P (—P)(=D@s %),

P = —Q - Py Pz(l‘-g — ilig)." N

From (i3} it is easy to se;.gz’"t)xe offect of the proposed transposition:

Q is not changed at alB PP 1s replaced by Pifi; and z, — e 18
replaced by its negative, Te — T Altogether, the trunsposition re-
places P by —IP. DM the restoration of (2) to the natural order (3)
can be achieved/with ¢ transpositions, P will be converted to (—1)*P.

The entire Pérmutation from (2) to (3) can be carried out on the
subscripts @fMhe variables in P at a gingle stroke: Replace @y, every-
\vhere'iQ:i"-” by @1; ¥;, by 22; ete., and @i, by #,. The resultisa well-
defified-'polynomial which may be indicated by 1. If the same
effest, however, can be achieved by ¢ transpositions and also by s

transpositions, we find that
(~1)!P = Py = (-1

It follows that (—1) = (—1)%, as the fernma claims.

By virtue of this lemma, the sign or factor (—1)* associated with
f’-a(:-h term (1) of |4| is uniquely determined, and the definition of |Al
18 now complete, .
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ExERcsES

1. Prove that |A] = anae — @wes if A = (2} is 2 X 2. ‘
2. Evaluate |4!, where 4 = {a;;) is a general 3 X 3 -matrix.
3. Compute the following determinants:

1 93 [0 -1 14
3 2 -2 1
0 —4 2|; -
I & 4 0 4 01
- 1 0 -11 ~

4-3 Special cases. For the identity matrix the deﬁnitien:pf ide-
:;-eyxfnant produces conly one term which is not zero, apd:‘thi's is 1:
1] = 1. N

In fact, the same reasoning shows that if D is any. #agonal matrix,
1D is the product of the diagonal elements: )

(7) D =diag (m, ..., a.), |D| Ftuds - - - @
Now consider a matrix x\

_TB:. o:]'
®) 4= [(,lf:LBz ’

in which Biisan rxXr block, s an s X s block, and the O's are
rectangular zero matrices of suitable sizes. Then, as in Section 1-6,
4 is called the direct sumiof B, and Bs, and the { ollowing notation is
used:

) :
KA = diag (By, By).

Similarly, if t;]\’iél‘()' are ¢ squarc blocks By, ..., B, on the diagonal,
and blocks QQ the diagonal are all zero, we write

9 S A=diag By, ..., By

and callM the direct sum of By, ..., B. This may be regarded
a8 agfneralization of the concept of a diagonal matrix. The formula
ii?)“ for the determinant of a diagonal matrix slso generalizes: The

atrix 4 in (9) has determinant

{10} [A| = |By| - - - |Byf.

To prove (10) consider first the special case (8} in which ¢ = 2.
Let By be r X r and By be s Xs. Each term (4) of |A| has first r
factors from the fivst r rows of 4. Any one of these factors that does
not come from the first r columns is 0 and the term is 0. Thus the
terms of |A| coincide with the products of those of {B1| by those of
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|B,|. Tt is eaxy to see that the sign (—1)¢ of each term of |A] is the
- product. of the signs (—1)% and (—1)" of the corresponding terms of
| By} and !5l When these details are verified, we have formula (10}
for the case =2, The general case follows casily from this special
case:
A4 = diag (By, Ay, A1 =diag (By, .-+, By,
LA e Il LA, ] = | Byl - |diag (Bs, - - -, B)|.

|
Thus repentcd application of the result for ¢ = 2 gives (10).
In this discussion we have been considering determinants of square
diagonal blocks. The determinant of any square submatrix of A 8y
callod & subsdetorninant (or a manor) of A and of |4]. O\

&

Q

-
.
< 3

ExERrCIisEs

%1, Let A == (a;;) be an = X n matrix such that a;; = 0 1f3\>\ 7, that s,
elements ahnve the diagonal are zero. Show that |4] is phieproduct of the
diagonal elements of A. AN

%2, Lot A e o matrix of blocks with only zero bl'qc‘\ks.u,bove the diagonal,
and square blocks on the dingonal. Verify that {4] is the product of the

determinanis of the diagonal blocks. g W

S\

%

44 Elementary operations. The;i‘é‘lajtions between (4| and |B]
when B is cquivalent to 4 will be studied now.

Trrorra 4-1. If B s ob{;ai&ied fram A by interchanging fwo rows,

|B] = — Al A\
Suppose that rows plabd g are interchanged. Each term
{11) O\ T = by **  baia
N 7,
in |B], with Su:\f'l’%‘*l)‘ negleeted, has factors b = an; except for
(12) O bpi, = gy Daig = Griy
&l Pip aq‘p! g Pig

Thus if; t?’ki(}‘pth and gth factors in (1 1} are interchanged, (11} does
not ‘Ql&ﬁge in value but does acquire the appearance of 2 typical
term 8 in |A! with row subscripts in patural order. To restore the
column subseripts of S to natural order, first restore them to the ‘
order in which they appear in Ql), using one transposition. Then
use the same ¢ transpositions used on (11) as a term of |Bj. This
_shows that if (11) as a term T of |B) requires the sign {—1)?, when
it is written as a term of |4| having the same value as 7T, 1t re-
q‘lil‘TS the sign (=1)+ = —(-=1)% Since each term changes sign, | B}
=—[4].
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THROREM 4-2, If B is obtained Jrom A by multiplying a row by e,
|Bl = ¢ |A|.

The terms of |B| are now the same as those of |41, signs included,
except for the replacement of the factors

(13) ' Upty - ..,y Gpg

by cay, ..., c'a,,,,. Since one and only one of the quantities (13)
&ppears as a factor of each term of |4/, this replacement introdives
the factor ¢ on every term. N

(\A
TumorEM 4-3.  If 4’ is the transpose of 4, [ =14LO

Let A= (aﬁ,‘), A= (bh:') 50 that b,s,_f = Q. A typi(:&il‘térm in ‘/1 "i is
: (14) Z)11'1 e bm‘,, =Gt Gy .‘.,:\.‘

Then apart from associated signs, the terms sdhprising [’ are the
same as those in [A [, sinee from either viewpoint (14) gives all possible
products of # factors, one from each rawand one from each column,
Suppose that ¢ transpositions restoroh, ¥, . . ; %= t0 natural order so
that (14), regarded as a term T inyfBY, has sign (—1). If the right
side of (14) is to be regarded as atetm 8 of [A] the factors must first
be resrranged to gef the row sﬁbScripts in order before we can count
the transpositions that determine the sign associated with S. This
rearrangement of factorsioh the right side of (14) is exactly parallel
to the rcarrangement@f. column, subscripts on the left of (14), hence

may be carried out jn\bsteps, each step interchanging only two factors.
If the result is depoted by

X
(15} \" Ay ™~ gy
the arraugéﬁént
CORNY Feydn

h@&\been obtained from 1, -~y 7 by { transpositions. The same

ranspositions performed in reverse order then restore (18} to natural
order. Thus (15) does have the same sign (—1)¢ as (14), and the
theorem is established.

By virtue of Thearem 4-3, results relating to rows can be converted
to analogues for columnps, Let B denote the result of interchanging
column p and column ¢in 4. Then B’ is the result of interchanging
row p and row ¢ in 4’| s0 that |B'| = —| 4!, whence by Theorem 4-3,
|B] = —{A|. Similarly Theorem 4-2 may be converted to a colump
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theorem: |B| = ¢ - |4| if B results from multiplying a column of
dbye
Trrony 4—1. The column analogues of Theorems 4-1 and 4-2
are valud.
Exzrcises

1. Verify Theorer 4-3 for a gencral 2 X 2 matrix.
2. Bhow that

9 4 8 111
‘023=12011=12. .
149 1 2 3] O\

3. Let A = (a;;) be an n X n real matrix such that every diagonal,efel}lent
ia zero and @y; = —ag if £ % . Prove that if » is odd, |A] = & ¢Hint: Use
Theorems 4-2, 4-3. . .\ ’

%4, Let A be a square, complex matrix, and A be the matzisobtained from
4 by replacing cach element of A by its complex conjugaten” Show that 14}
is the conjugate of [4]. N

5. In the preceding exercise if A = A’, prove that V| is real.

443 Expansion by cofaciors. Bcfore&di's‘ﬁ'ussing the third type of
slementary operation it is necessary t;ci’discuss another eoncept.

DermxiTIOoN 1. Lot M denoté,’"t};e (n—-1Xn-—1) subméﬁt‘trix
of A = (us,) obtained by deleting row h and column j. Then the
sealar ) {‘,\ :
2 i
is called the cofactg’r; of an;in A. Then Xn matrix {c;)’ is called
the adjoint of ‘{g,nd is denoted by adj 4. _
Thus, if (& 3¢ called the cofactor matrix of A, the adjoint of 4 is
the t-l'a.nsl}{?s} of the cofactor matrix of 4. '
’lfgm"}mu 4-5. Foreachvalue of h=1,2, ..., 1
(17}\ 4 lAl = GpiCm + 4+ QanChny
(18) lAi = etlas + 7" + Counlinke
Each term (4) of |A| contains precisely one factor from row h,
tIm, ey ahn,
?f A. Tf all the terms of |4]| containing ax; are assembled, and if this
is done for each j, the following type of formula results:

JA] = amdp+ - > + Apllin
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Then (17) amounts to the claim that di; = ¢,,. Thus we must prove
that

(19) duj = (= 1)MM ],

where Mj}; is the submatrix of 4 that remains when row A and eolumn
7 are deleted.  Since dy; is, apart from signs of the terms, the sum
of all produets of n — 1 factors a,, representing every row of A except
row i and every column except column J, the terms in o), au'o.{he
same as those in |M,,|. It remains only to see that each termNhas
the appropriate sign. O\ _

To take first the casc in which h = 7 =1, we must {Prove that
du = |Mu|: that is, each term in dy must have the smige'associuted
sign ag the term in M 1, which iz made up of the sa;n;eff actors.  Buch

term of dy; is of the form S
(20) (=1 - - - s,y N
" where Al

S = (=1)'anay, ;"':'>1ns,.

isatorm of {4].  Since the sign (=1)¢ ofS depends only on the permu-
tation o, ..., 7, 0f 2,.. . m, (20):does have the appropriate sign for
a term of |[My|. Thus dy, =M%, From this special case of (19)
the general case may be proved.

Interchange row k of A With the row above it, and repeat this
process until after & — {interchanges row appears in the top posi-
tion., The lower rp‘}g\then are in their normal order except for the
OI'!lji:ESiOIl of row K. ) Similarly, move column ;7 to the first position
by -1 inteljdi)aﬁges, lesving the remaining eolumns in their usual
order, exceptfor the omissien of column j. The matrix B = (b,,) so
obt-ameke;}ﬁlts fromj—14+h—1=p J — 2 interchanges, so that
(21) O 4] = (=1ym|B|.

’M;(?‘F?OVQI‘, the element by, of B is bu = as;, and the submatrix By
Qo tained by delcting row 1 and column 1 of B is By, = M B
By the ‘s;.:ecia] case of (19) already proved, the sum of sll terms in
[B| containing bu(= a.;) as a factor is bu|Buy|, and this is equal to
05| M. By (21}, when the terms of |B| are multiplied by (—1)**1
they are converted to terms of (A}, so that the terms in

(= )%+7ay,| M

?re terms in _[AI. ’.Phis gives (19), and thus (17). The analogous
ormula (18) is obtained from (17) by an argument on transposes.
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The formula (17) amounts to the statement that |4| may be caleu-
lated by muitiplying each clement of row h by its eofactor and adding
the results. This is ealled the expansion of |4] by elements of row k.
Similarly, (I8) is the expansion of 4| by elements of column hi|Aiis
the swm of the products obtained by multiplying each elemoent of
colump % by its cofactor. A determinant may be computed or
“expanded” according to the elements of any row or any column,

ExERCISES

1. Expand each of the matrices in Fxercise 3, Section 4-2 (a) according
to the clements of column 1, (b) aceording fo the elements of row 1. 280
2. Tf o scuare matrix hes a row of zeros, prove that its debermin%'frt ig
zero, first by the definition of determinant, second by use of Thcp::{arn’4—5.
%3. Tot A be an n X n matrix for which every & X & subdeterminant is 0

for somg fixed & < n.  Prove that [4] = 9. '\‘

-

'l_/ﬁ:—s The adjoint. If two rows of A are alike,x’ orchanging them
gives the same matrix A, but also gives 1Al = L4 by Theorem 4-1.
Then (i +1)A| =0, and |4]=0. The Jdrresponding resuit for
colurmna is provable in the same way or.hy the device of transposes.

Levina 4-2.  If two rows or two coj@éﬁns of a square matrix A are

alike, (4] = 0. A\

There ave ceriain fields in > sith 14 1 =0, whence the argument
above fails: (1 + 1)|4] = 0¢&lffiough |A| may be different from zeto.
Even in this strange sipuation Lemma 4-2 is valid, but the proof

will nog-be given hergy\J :
AN
EOREM 464 F0r every square malrixz A,

\\’?“A(adj A) = A} T = (adj MA.

In sho;ft;'; when a matrix A is multiplied on either side by its
adjoing 3 scalar matrix is produced, the diagonal elements all equal-

ing ™M
Column & of adj A consists of the eofactors of the elements am, . - .,
iy of Tow B of 4. Thus the element in the (h, h) place of A(ad] A)is
: e -+ - ¢ T OrnChny
which is |4} by Theorem 4-5. To complete the proof of Afad] A)
= |4}. 7, we must show that '
(22) [22; L3 ] + o + GinCrn = 0;

'

) 4
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when j # h. Suppose that row k of A is replaced by a veector identi-
cal with row 7, giving a new matrix B. Then'|B| = 0 by Lemma, 4-2.
If the determinant of B is expanded by the elements of row !, how-
ever, the left side of formula (22) resulis. This completes the proof
that A(adj A) = |A]-7. That (adj 4)- A = {4] - I can be proved
stmilarly.

Exenrcises

1. Prove the column part of Lemma 4-2 from the row part by use\of
transposes.

. N ¢
*2, The matrix oA\
o 1 o 2 - 29 O
1 # x 0 z3? AN
S ‘:
V= \\
1 =z, x% --- x:—‘

is known as Vandermonde's matrix. Prove“ﬂ;at IV is the product of all
binomials x; — @; with ¢ > j: PN

IV =[(m: — %)) - [(25 — 22} (s —QKJ.)J (B — o) v (@ — 2]

3. Find the adjuint of a general 2)(2 matrix A, and then compute the
produets Afadj A) and (adj A)dey ™

4 Compute the adjoints of~the matrices in Exercise 8 of Section 4-2.
- I (2, w) and (o, yz) “qx@ distinet points of the real plane, show that the
equa.tlon \ } '

\ ) oy 1

4 o 1
I3 Ya 1

=0

C\

represents a@t\fxlg}lt line through these two points.

4-7\ Nonsmgulanty and products. We have discovered the effect -
oy Lr1| of p{,rformmg an elementary operation of type I or IT on A.

\}mu we are in position o study the third type of elementary opera-
ion

Tuevorsm 4-7. If B is obtained from A by an elementary row or
column operation of type 111, |B| = |A4|.

If B= Ek,(c)A the rows of B are those of 4 except for row &,
- which is

it e, ..., Gt Cin.
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- It | B| is expanded by the elements of row h, the cofactors cx employed
are the same as the cofactors cw of the elements @z in A, Then
Thearern 4 -0 gives

|B| = 2 (ahk + ca,-k)c;;k

%
= 2 lhr Cz kCh:
% 3
=|Aj+¢-0=[A]

The result for column operations may be proved by use of transposes.
The three results on elementary row operations may be summarized
compactly. i cach of the three cases we have B = EA, and |EA1\
has the valuos O ’

(23) _l'(‘1 I|: c |*4|! |A|, ..'( ‘.}"

for types I, 1f, and III, respectively. Taking A to l}~e,ﬂ1‘e’ identity
matrix we tind from (23) that the determinant chlamw’ clementary
matrix E is —1, ¢ £ 0, or 1 according as E s qf{sype I, I, or 1IL.
Then in everv casc (23) yields the formula, |EA[=|E| - Al

Lemma 4-3. If K is an elementary matrj.x and A is any square

matrix of the same size, |[EA] = |E| - |4

For a product #;--- KB with gl,e;ﬁént-ary matrices Ej, repeated
application of this lemma gives )
(24) \Es - - - Ec%?{:% Es| - - - |Edl - 1B

It is worth rcmemberin‘kx\-ﬂat Theorems 4-1, 4-2, and 4-7 are all
ineluded in Lemma 43> We need only use the facts that |E| = —1,
¢, or 1 in the thrce;ca\sés, respectively.

TasorEM 4-83“ A square mairiz A 8 nonsingular f and only of
|4} »= 0. gdp This case :
\\ 1 ..
N® A1 =——-adj 4.
»‘\; 7 . | A| J
Iﬁt‘u # (), Theorem 4-6 gives rise to the formula above for A7,
%0 that A is nonsingular. Conversely, if A is nonsingular it is 2
product A = K, .+ K, of elementary matrices £;. Then (24) with
B =1 gives
|A| = Bl - - - 14,
and this product is not zero, since each factor |, has value =1 or
¢ 5 1, :

Q
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TaEOREM 4-9. |AB| = |4]- |B|.

If A is singular, |A| = 0 and the right side of the formula above is
gero. But the rank of AB is no greater than that of A (Exercise 7,
Section 3-9) o that AB is singular and |AB| = 0. This leaves the
eagse In which A is nonsingular. Then A iz 2 product &y .- - F; of
elementary matrices E;, and by (24),

|AB| = |Ey- - - EB|= |E| - - - [Ed - |B| = 4] - |B].
ExERcISER \

1. Bhow without use of Theorem 4.9 that |4 E| = |4|-1E] if E'xig‘any el-

ementary matrix. S\

2. Use Theorem 4-7 to caleulate the determinants p.f.}‘t‘ﬁe following
matrices: - N\

o
L 3 s 5 —6 —1 A
o 44l | 0 2 -8
1 -1 1 2 =Bk

-1 002 1
N\

3. Caleulate the inverse of the first mgtriz'in Exercise 2 by Theorem 4-8
and also by the method of Theorem 3-16
*4. If A is nonsingular, show that | = |4},
5. Prove that the adjoint of a singular matrix is singular,
6. Prove that |ad] 4| = [A[sIH 4 s n X n.
7. Prove that [adj (ad] 4&00\=[4|™ m = (r — 1), where 4 is n X 2.
*8. Vaundermonde's maiti'i?s (Exercise 3, Section 4-6) may he defined as the
n X nmatrix V == (v;g\r);,- = ", Prove that ¥ is nonsingular if and only
if m, ...,z are distinet.

*0. Let o, ... \,c,lbe distinet quantities of ¥, and let &, ..., &. be any
quantities of EP Prove that there is a polynomial f(z) = ao + awx + - -
-+ gpazn ! +¥“ such that fle) = &, ¢ =1, ..., n, and all the coeflicients

NS ;
& }1{1}1{"&“ '(Hint: Use Exercise 8,) Is f{x) unique?

48 Determinat_nts and rank. The rank of any rectangular matrix

Jna}y bt? c‘hax_'actenzed in terms of determinants of square submatrices,
Ndnd this is, in fact, the way most of the older works treat rank. The
property 1s given here as the next theorem.

TaeoREM 4-10.  If A is any rectangular matriz, let t be the largest

wnteger such that A has a & X ¢ submatriz with determinant not zero.
Then { is the rank of A,

Let Cbe at X ¢ submatrix of 4 with |C| % 0. Then Cis n?nsingU-

lar by Theorem 4-8, so that its TOWS, 1, . .., v are linearly inde-
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pendent. These rows are parts of possibly longer rows, oy, ..., ay,
of A. If a linoar combination vanishes,

€ 1 "'+Cxa¢=0,

then surely ey + -+ + ¢rye = 0, so that all the ¢; are zero, This
shows that i, . .., a; are linearly independent, whenee A has rank
rz b
" Since A hws rank 7, it has r linearly independent rows forming an
X s submalrix B3 of rank 7. Then B must have r linearly inde-
pendent colummns forming an r X r submatrix € of B and of A. Sincg
the columns ol ¢ are independent, € has rank r and i nonsingulary’)
- so that €} » 0. This proves t 2 r. With these two inequali{?ics

77

we conclude that v+ = £ A\ 3

To eompiée the rank of A by Theorem 4-10 we would baye to find
a { % £ submuairix which is nonsingular, then show thaf every larger
square submatyix is singular. It would suffice (wh¥®'to show that
- every (£ + 1) X (¢ + 1) submatrix is singular, but* the number of sub-
matriecs to cxamine can be reduced still fu@h‘e\, as the next result
shows. $)

TuroreM 4-11. Let A have et X L siibfnatri:c T which is nonsingu-
lar. Lei cvery submatriz of A conlgining T and one more row and
one more column be singular. ¢Then A has rank i.

It wili simplify the nota ii{n’\without destroying the generality of
the argument if we take T\ﬁq the first ¢ rows and eolumns of 4 = (a:):

ain \ 15 o [an ... Ox
N

AENY - L T=

O\

g Gp1 - .. GOus Ay ... Qo

Let @; designate row 4 in 4, and r: designate that part of o belong-
Ing to the first £ columns:

oy = (a;l, vy I‘Iig)_. Ti = (afil: sy Bi:),

where =1, ..., n in cach case. -The Tows 7, ..., 7¢ of T are
1mearly____indcpendent. and span V.(F). If ¢ > ¢, 7, is then umquely"
expresstfle as a Jinear combination of 7, . .., 74!

rp=tmt - T CTe
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Now suppose that U7 is a submatrix of A constructed from the sub-
matrix T by use also of row ¢ and column r of 4, ¢ > {,r > &

T, e

T2, e

Tt Qg O\
| Tay  thgr_|

RN
By hypothesis, IV is singular, ifs rows are linearly dependent} and it
must be possible to express s last row (why?) as a llnear comblnatlon
of the preceding rows: -~

(o, @) = Falrs, @z + -+« -+ hlrg a';,i

This implies that N

Te=kint - dkry G = kufl}'l" * =+ ki
By the uniqueness of ¢y, . . ., ¢ above, W€ conclude that &y, = a1, . . .,
ki = ¢, The coefficicnts Fc abovg <are thus independent of r, that
is, are the same set of ¢ scala:rb for all choices of r=¢+1, , &

Therefore, if we recall that

%‘79‘: Qg ity « o« + aqc),
we conclude that \\

\ ~x =ty + -+ 4+ G:a’p.
Since the rows@f 4 are thus linear combmatlons of t of these rows,
A hasra "‘<‘i By the preceding theorem the rank is = t, whonce
it is exac%%y

\ . ExrrcIsES
\1' Compute by determinants the ranks of the matrices in Exercise 2,
Section 4-7.

2. Prove by determinants that the vector space in V,(®R) spanned by
£= (Or 1, 2; 3): n= (1: 1, 2: 2)1

has dimension two.

3. Use Theorem 4-10 fo prove that the rank and nullity of a matrix do
not change when the scalar field i= enlarged.

4. Answer the question raised in the proof of Theorem 4-11.
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4-9 Cramer’s rule. The adjoint formula for A~ in Theorem 4-8

has a conseouience for systems

(25) AX =K, K=col (ky, ..., ks

of » linear equalions in » unknowns 2, . . . , 2, With nonsingular co-

efficient matrix 4 = {a,). Multiplying on the left by A~ gives the

solution in the form

(26) X =A1K
and shows that the solution is unique. By Theorem 4-8 this may
be written as . O\
] _ A\
{27) X = — (adj 4)K. g o
A (adj 4) Kt

Row h on the left side of (27) is simply the unknowng¥;> Since
row h of adj A consists of the cofactors e, - . . , Can(20) yields the
fellowing {ormula: »

x'\\' N

(28) .’L‘;,=Clhkl+ +cnhkn'“'\l. (h= 1’ _._,n}

FINEENS
Consider the matrix 4 (h) construsted frog A"by replacing column &
by the column, K, of constant terms. .I‘hé cofactor of k;in A(h) is
the same as the cofactor ¢;x of a;s in «, 80 that the numerator on the
right side of (28) is the expansion of A% by the elements of column A.
Thus (28) becomes K

(29) Q_M (h=1,...,n)

AN

Formula (29), or theéquivalent (28}, for solving a system (25) of
linear equations Wit nonsingular coefficient matrix is known as
Cramert's rule,\{Jfs main claim to fame is that it gives a routine
procedure f ('Jrffﬁlding each unknown, and that its application requires
very littlesththematical background. Neither (29) nor (26) is a
very %ﬂ‘};@eﬁt rule for numerical solutions when # is large, unless high-
8pecd Gomputing machines are used.

EXERCISES

L. By Cramer’s rule, solve the system

r+ y+z=0)
2z — y+z=—3
T+ 2y = 5.

2. Solve the system in Exercise 1 by the method indieated in (26).




-/ CHAPTER 5

CONGRUENCE AND HERMITIAN CONGRUENCE

~"B=1 Quadratic forms, A polynomial like
1) 22* 4 bay — Ty = flz, 1) = 1,
with real coeflicients, every term being of degree two in 2 and@/)is
called a quadratic form in z and y. To relate (1) to ma@r\iegs.j we
- write it a8 N K
f=224 3zy + 3yx — Ty
= x(2z + 3y) + y(32 — Ty) _ \

- @2 e ( )fﬂ

Thus the matrix

o3

has been associated with the form (1), and f may be regarded as a
1 X 1 matrix which is the prodm‘t

3) f= X‘AX, X = col (z, ).

. . o~ . o
Notice that the diagonalelements, 2 and —7, in 4 are the coefficicnts
of the squared term f, and the other elements, both equal to 3,

are the coeﬂimen’sb wi the two equal terms
N \ /

x,\ 3xy + 3y,

into w ch ithe cross-produet term of f has been split. Notice, alsq,
that A"‘has a8 the property

m(:ﬁ: A=A

\/ A square matrix A = (as) over any field § is called symmetric if,
as in (4), 1t is equal to its transpose. An equivalent property is that
ai; = a; for all ¢ and j,

A polynomial f = f(z,, ..., 2,) in variables , ..., 2, with co-
efficients in a field ¥ is called & quadratic form in zy, . . ., x, if every
term of f is quadratic in the variables. Then f may be written as

(5) I = Zziaqz; (4,ij=1,...,m
84

\
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This notation assumes that each term in zuxx (b 7~ k) has been split
into two terms
ApiTale + QLT

There arc many ways of doing this. The split-up which we wish to
use is that in which @ = @i, 80 that each of these equal quantities is
half of the totul coefficient cu of zazi in f. With this agreement,
every quadratic form fin @y, ..., %a is associated with a unique
matrix 4 such that

6) U=d, f=X'4X, X=col (@, ..., L) R\,

This matrix 4 is called the coe flicient matriz of f, or simply“thé’qnatriq:

of f. ",

Fvery field contains a quantity 1, and 2 is deﬁned’;}o be 14+ 1.

The elementary algebra of finding the coefﬁcien&; discussed above
D

proceeds us follows: o
‘..x\

Gpy = Qiny, Ok T Orn TG
205 = Gy Wa\= ZChke

Tn the last step we multiply by &, t}_:lat: i#, the inverse of thequantity 2.
This is perfectly valid in any subfield of €, and in miost other fields.
There are, however, certain ufusual fields in which 1 +.1=0. For
these fields 2 is (, hence has no inverse, and the process above is
invalid. In our discusgif}n\Of quadratic forms und symmetric mat-
tices we shall alwaysSolake the assumption on ¥ that 1+ 1 = 0.
(The reader who j@htercsted only in the cases of ® and € may dis-
regard this hyp ti}}gfsisj To repeat, then, every guadratic form over
a field ¥ in ,‘{{hi’ch 1410, has a ilnique, symmetric coeflicient
matrix. '

“Quadrgtic forms cccur not only in the study of conic sections and
quadyie Surfaces in analytic geometry, but also in problems of maxima
and Minima, dynamies, and statistics, as well ag throughout higher
mathematics. This is perhaps the reason that the theories of quad-
ratic forms and symmetric-matrices over G and € were highly de-
veloped at an early stage. :

¥f the form f in (1) is placed equal to a sealar, say to 1, the equation
of u conie is obtained:

227 + 62y — Ty = 1.

The routine procedure for determining the nature of this conic re-
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quires a rotation of axes to eliminate the cross-product term. This
is done by a substitution:

r=xcost+y sinl
y=-x"sini+ y cos!

] [ cost sinl l::r,’:l.
vl l—sint cosé]ly
When { is appropriately chosen, the conic is represented hy'a Rew

e%tion in z’ and 3" with only squared terms present. )\
Wherever quadratic forms (6) arise, one is usually irmvwrééted in

or

“simﬁli_fy:_ip_g’f them by making a nonsingular linear ;su}ggi.it,ut.iogy

¢} X =Py .,
. . X o\

where P = (p;) is a nonsingular matrix and X4 an n-tuple of new

variables, ¥ = col (s, ... » ¥»). Such linear substitutions always

lead to quadratic forms in (3, . . . , y). I{’f;a\.ct (7) may be substituted
directly in (6): O

f=X'AX = (PYYARY = Y'P'APY.
Notice that /AP is symmetrio, (% is symmetric by hypothesis):
- (8) : (P’AP)".%;P}A’(P!)’ = P'AP.

Sinee the symmetrie ¢ t@'cient matrix of a quadratic form is unique,
we have; O

H &

u lHEi{)REM 5—1 \ } @ quadratic form with mairiz A 1s suljected fo @
nonsingular imear subsiitution {7), it becomes a quadratic form with
mairic DAP, P nonsingular,

Two\n“}ht'rices B and A are called congruent if /
(9) \ B=pPAP
w\f?r’_'some nonsingular 2. The reduction (or simplification) of quad-
\ :g@c forms by nonsingular linear substitutions amounts to the same
thing as the reduction of symmetric matrices by congruence. Ob-
serve that B and A are necessarily square and of the same size as P
Mo}r{eover, congruent matrices are equivalent, hence have_the same
rank. B
ExErcIsEs

1. WriteE the matrix of each of the following forms:
{8) 21 + 2220 4 Bau + 4z} + 5al;
(b) 2zy. .
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*2. Show that congruence of » X n matrices is an R8T relation.

3. Show that A’A and A A’ are always symmetric, 4 being any rectanpular
matrix.

4. Let A and B be symmetric matrices of the same size. Show that AB
i symmetric if and only if A commutes with B.

5. Show that cvery nonsingular symmetric matrix is congruent to Lty
inverse.

6, If 4 is symmetric, show that B = ¢xd™ + -+ + ad + ol is sym-
metric, the ¢ being arbitrary scalars. Show also that A1 is symmetric if it
exists.

7. Let A and B be congruent as in (9), where P is nonsingular. Proye
that all nonsingular matrices @ obeying ¢AQ = B are given by ¢ = RP,
R varying over all nonsingular matrices such that R'AR = 4. (Buch
matrices & are called congruent automorphs of 4.) N

8 Let f = gz + - - + awxa. Show that the quadratie’form f% in
21, ..., %, has coefficient matrix ¢ = #E, where {15 a suita“blé Tow vector.
Show also that (' = A’A, where A is the n X n matrix with$ as its first row,
all other rows being zero, PN

0. Tet g = fi+ -+ + f2 where fi = auts puds ¥+ @utn and r = n.
Show that g = X'CX, X = col (z, . .., Zn), where ¢ = A’A and A is an
n X n matrix generalizing the matrix A of EXercise 8. Then show that
ICl=0ifr < =, SN

«ay

N

5-2 Range of values. If [ = f(a;f, ..., &, is a quadratic form
over a field ¥ and if @y, . . . ,@nare in &, flay .. ., a.) 1s a value of f
The totality (or range) okx'@:lﬁes of { is some subset of &.

Tueourm 5-2. 7Tha :mnge of values of a gquadratic form does not
change under nowstngular linear substituiion.

We have ¢\
N f=XAX = Y'P'APY, X =PT,

where P38 nonsingular. Notice that “old” and “new’’ forms may
both Beregarded as f, but expressed in terms of different variables
whicll are retated by the equation X = PY. If a value of f is ob-
tained by replacing ¥ by the vector ¥, of values in &, the same value
of f is obtained from the old variables by replacing X by Xs= PY,
Converscly, each value obtained by using X = Xo is also obtainable
by using ¥ = ¥, = P'X,. This proves the theorem.

To say that two quadratic forms f and g in the same variables
T1, ..., . are equal is to say that they have the same coefficient
matrices. Then they surely have the same range of values and,



58 CONGRUENCE AND HERMITIAN CONGRUENCE [ciar. 5

moreover,
(10) f(a'ls veny EI-“) = g((h, ey a‘l’l)
foralle;in & i=1,..., n. Now we answer a converse ques: ol
TrpoReM 5-3. Let § be a field in which 1+ 1 5 0. Let f and g
be quadratic forms in @y, ..., &, over F such that {10} holds for all
a;in¥, ¢=1,...,n Thenfand g are the same form.
1If Q
: f=X'AX, ¢g=X'BX, A
{
it suffices to show that A = B. Also O
h=f—g=X(A-BX N

is a quadratic form whose range of values congi{{té' only of zero.
Hence it suffices to show that if A = X’CX has Q(a8its range of valucs,
then C'=0. Let C=(¢y). If X is replaced, by the unit vector w«
there results O

0 = vwiCu; = c\,‘,\v (t=1,....8)
so that the (llagona] elements of ¢ are all zero. Next replace X by
i+ (3~ J): :"

0= (ugrféja;f)(,*(u,- + )
=i ¥ o+ i+ ey

05t Gy = 2,

- - u 'i 3
since C is symmetrie‘arid % has only the value 0. Thus 26; =0,
5= 0=g; and C'

DEFNITION 1} A quadratic form f over ® is called positive semi-
deﬁmte lf\xfﬁme of its values is negative; it is positive defindte if its
Valueﬁ\Qrﬁ positive except when all of the variables are zero.

The\ form #* 4+ y* in variables = and y over & is clearly positive
dehmte The real form

O [ -y + 3y
isOforx =1, y = 2, so that it cannot be positive definite. However
L O

80 that f is never negative; f is positive semidefinite,

e
Dermvrriox 2. A symmetric matrix A over ® ig posilive semi-

definite or posztwe definite Jf the form defined by A has the like-
named property.
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. The nature of these matrices will be scrutinized clogely in Sec-
tion 5-3. '
Exercisks

1. If the sealar field is ®, ind the range of values of each of the following

forms in  and 4
{a) 224 %5 ) 22—y (¢} oy

What arc their mnges if € is the field of scalars?

2. Bhow timt the form z* 4 ay over ® is not positive semidefinite.

3. Show thal matrix I:_i _i] is positive semidcfinite. '.\:\

4. I two resl, quadratic forms in 2y, . . ., @ are positive definite, sh’():ﬁ that
their sum is positive definite. AN

5. If fis 0 positive definite quadratic form in &1, . . ., %7, and 'g}s a’positive
definite quaclyaiic form in oy, . . ., T, show that f + g 13 apositive definite
quadratic fore in zy, ..., Zne ’

K7

5-3 Congruent symmetric matrices. Capgruénce is an R8T rela-
tion on the set of all n X n matrices over & Most of the known re-
sults about, the Tnatrices congruent to_a‘given matrix A are confined
to the case in which 4 is symmetrig:\ In this case, as noted in {8),
every matrix congruent to A is algmsymmetric. With this as a start
we proceed Lo seck out the sipgplest possible matrices congruent to a
given matrix. )

TaEOREM 54, Two%.at'rices are congruent if and only if one
oblainable from th\e‘ bther by @ succession of pairs of elementary op-
erations, each gair consisting of a column operation and the corre.
sponding row. 6peration. In each pair either operation may be per-
Jormed ﬁ.;r:% . '
Eacl gic;mingular matrix P is a product of clementary matrices:
\‘:" P=E - B

Hence B = P/AP if and only if

' B=E[ - (BAEy) -~

For each column operation effected by E; as a right factor the corre-
sponding row operation 1s effected by E; as a left factor. The final
isl;at_erml:lt in the theorem merely amounts to the agsociative law:

E(CE;) = (EIO)E:.

Q"
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'THEOREM 5-5. Over any field § in which 1+ 1 = 0, each sym-
metric matriz A is congruent to a diagonal mairiz in which the wsmber
of nonzero diagonal elements is the rank of A.

If 4 =0, the desired diagonal matrix is 4 itself. Hence we assume
A # (. Next we show that A is congruent to a matrix B- with
nonzero diagonal element. This is true with B=A = J'A7 if 4
= {ax) has a nonzero diagonal element ;. Now we may assume
that every au., = 0, whence some az; # 0 (b # j). Then ~

Qp; = ty, &= 0, Qup = Ay = 0. y \\

{
Addition of column j of 4 to column %, then of row j toyow £, re-
places A by a congruent matrix B = (&), in which N\

(1) ' bin = G+ @y = 2085 = 0. N

N
Thus in any case there is a matrix B congruent ’E‘G\ A with a nonzero
diagonal element by Interchange of columnh and column 1 in B
followed by the corresponding row operationrreplaces B by €' = (cx)
with ¢y = b, » 0. Now we add to (:olurhl J the product of the first
column by —e;/en, then perform the :cérresponding row operation.
Since ¢y = ¢y, this makes the newteléments in the (1, 7y and (5, 1)
places both 0. Doing this f0r~e§z-.(}h'j, we replace C by a matrix
‘ C11 0
&=y DJ’

where D, has n — 1 xows and columns and is symmetric. (Is com-
putation necessary,to'werify the symmetry of %) :

The same progedure may be applied to D, by applying it to D with
operations not aifécting the first row or column. After a finite num-
ber of steps\t;l}éi'e appears a diagonal matrix congruent to A. Preser-
vation of\wank is a consequence of the fact that congruence is a
specialease of equivalence,

AN N
\d ExERCisES

N

1. Using elementary operations, transform the following real, symmeturic
matrices to congruent matrices with at least one nonzero diagonal element:

01 2 001
di=|1 0 3% A;=]|0 0 0]-
L2 3 0 I 00

Then complete the reduetion of each of these matrices to 2 congruent diagonal
matrix. Express the results in terms of quadratic forms 7, and f,.
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- 9. Find a nonsingular matrix P with rational elements such that P'AP is

disgonal, where
4= 1 2]
T2 4

3. Prove that n symmetrie, complex matrix of rank r is congruent to

1L 0
0 0
Hence prove that two » X » complex, symmetric matrices are congruent if
and only if they have the same rank. N\
54 Congruence over ®. The diagonal matrix of ’i‘heorerr;.é;‘z').\ls
not uniquely delermined by the given matrix A. In fact the/three

matrices N
U _[4 0O 9 o O
1 _[0 1], B_[O 4], C'[o o

are congrucnt over the rational number field, \[Write matrices P
effecting these congruences!) Over the field oitreals it is possible to
strengthen the result of the last theorem. A\

v THEORENM 53-6. A real symmetric ma@rz‘i A of rank r is congruent™
fo a mairix N
I,80 0
B=|a\ -I._, 0
(e o 0
Th.e tnfeger p is unig:u?h} determined by A.
By the last, t-hep‘l"éh'l“:i is congruent to a matrix of the type
\:Yj = dl}ig (d1, ey d-?-, 0’ R 0))
where eac}y% s nonzero. Let p designate the number of d, which
are pOSiti{fQ. By suitable interchanges of rows followed by the corre-
Spflaglifi‘g column interchanges, these p elements may be brought into
thé,fikst p positions. Since the resulting matrix is congruent to D,
assume that /) itself has the properties, do >0 (h=1, ..., p) and
d; <‘ 0 (5> p). Then there are real numbers ¢z such that

dodp, et [h=loor ]
j=p+1...,7

Cr‘-{-l:.":c“:l‘
—_—

*Tn any such statement it will be understood that the matrix P effecting
bhe congruence ean be chosen to have elements in 6. This ’?onven’olon will
PeTInit us to avoid tedious repetition of the phrase “over &.
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The matrix P = diag (c1, ..., ¢.) Is nonsingular and P'DP is the
matrix B of the theorem.
To prove the uniqueness, suppose that 4 is also congruent to

I, 0 0
0 =|0 —1I r—g 0|

0 0 0
Then the form f= X’AX is convertible by nonsingular linear sub-
stitutions A
(12) X=PY, X=Q2z A\

: {
into A N
(13) T at TE T B
and AN
"
{14} gt bl — e =&
If p # ¢, it is only a matter of notation to as\gqmc 7 <.p.
If we express the new variables in terngg'\bf. the old,

(15) Y =PX, Z309%,
each y; and each z is a unique ljpé’ar" combination of z, ..., z,.
The equations N

=0 (h=1,...,¢

16 N 3 . 3 H

(16) AN ¥i=0. G=p+1...,n)
may then be regarded as{}:sﬁlult-aneous linear, homogeneous equations
@, ... @ Beiigg 42— p in number, g+ 1 — p < n, these
homogeneous equations have a nontrivial solution (Corollary 3-6}:
(17} NG = col (T, o0y ) 0,...,0.

With X =:X;5~\nhe value of fis X;AX,, but this value may also be
comput-iaa\\from (13) by use of ¥, = P71Xq, or from (i4) by use of
Zo= Q. From (13) we see that f = 0, since (16) requires those
Y ;W:“'j;h minus .signs to be 0. TLikewise (14) and (16) show that
A 20. Hencef=0. But by (16)

f=#i+-- 4+ =0, )
so that g1 =-+. =9, =0 and Yor1=+-- =y,=0. Then ¥,=0,

Xo=PY, =.0 in confliet with (17). This contradiction, arising from
the assumption that p ¢, completes the proof. '

“DEFINITION 3, The integer P of Theorem 5-6 is called the indez
of the symmetric, real matrix 4,
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If A, is congruent to A of Theorem 56, it is also congruent to B
(transitivily of congruence!) so that A, has the same rank r and
index p as . Conversely, if 4, has the same size, rank, and index
as A, they ure congruent to the same matrix B in Theorem 5-6, and
hence 1o each other. Thus

/ HEOREM 5 7. Twe n X n real, symmetric malrices are congruent
if and only if they have the same rank and the same ndex.

Since congruence of real, symmetric matrices is an RST relationy
it sepurates this class into subclasses, each of which consists ofsall
such matrices which are congruent $o one matrix. The last thq'o‘re}n
shows that ruch class is distinguished by three integers, n, ¢, and p:
all members in one subclass have the same number n of Tows, the
same rank 7, and the same index p; no two subclasses have the same
values for ull three of these integers. Thus n, r,add)p are called a
complete set uf invarignts for real, symmetric :Q{it-rices relative to
congruence. The matrices in Theorem 5-8 Q‘o}ide a eanonical set.

Exexcises ()
1. What are the ranks and indiees of tl;e’ tatrices A, and A, in Exercise 1,
Section 5-3° Of the matrices of theqliadratic forms 2w, and 2:2, + Tsve?
2. On the assumption that & she scalur field, interpret Kxercise 5,
Section 5-1, in terms of rank and’index.
3. Tet A be an n X = realsymmetric matrix of index p. Prove that |4]

2

s positive if and only if A’\Q\Iitmsingular and n — p is even.

4. Prove the first papbof Theorem 5-6 by working directly with substitu-
tions in & quadratic £éi‘h’i_. starting with the result-of Theorem 5-5.

5. List all 4 x 4real, symmetric matrices which are in the eanonical form
of Theorem TN

6. Show thatthe number of # X n real, symmetric matrices which are in
the canonical form of Theorem 5-6 is ¥(n + 1){n + 2).

5‘*5 i’ositive semidefinite matrices. Since the range of values of &
quddtatic form does not change under nonsingular linear substitution,
a form (or vesl symmetric matrix) is positive semidefinite if and only
if its canonical form (or matrix) has this property. The form f
assoeiated with B in Theorem 56 is displayed in (13), and f is positive
semidefinite if and only if p= 7. 1f p=r < n, (13) becomes

=yt Ot 08 |
80 that f = D with gy = +++ = Yut =0, y.— 1. Hence if f 18 positive
definite, p — r = n. The converse is apparent. This gives

Q"
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Y THEOREM 5-8. An n Xn real, symmetric matriz of rank v and
index p is positive semidefinite if and only if p=r, and posifure
definite if and only if p=r = n.

In other words, 4 is positive definite if and only if its canonical
matrix of Theorem 5-6 is 7. Then A is congruent to I,

(18} A=PIP=PP,
where P is real and nonsingular. Conversely, (18) implics that\A
has rank and index #. (Why?) ‘This gives ’

' THEOREM 5-9. A real matriz A ds postiive definite if q-n@f\nﬁly if
there is o nonsingular eal matriz P such that A — PPN

- -y
A submatrix of 8 square matrix 4 is called principa@ﬁ’ iths obtained k’
by deleting certain rows and the like-numbered eolimns. The de- :
terminant of a principal submatrix is called<a principal subdeter- k
minant or pringipal minor.. _ Y,

& ‘b 2%
. Jé,‘LTHEOE.tE-}M 5—10.’ {f A is positive defingbencoery principal submatriz
! \lm Y_‘_L_§ positive defintte. / Also |A] and al} Brincipal subdeterminants are
\ k - Lt —_——— o — o g
-

- posilive, N
M7= X'AX, the principal sbitiatrix S obtained by deleting row )
hand column % from 4 is the'matrix of the form g obtained from f |
by putting x'= 0. Then every value of ¢ for valyes of its variables,
which are not, all zero jg-also such a_value of J; hence is positive by

wm on f & dl_xi_ "This proves g and S positive definite, «
- The procedure just applied t6 F-amt hay be appﬁédﬁj_&_andy S,
with the result that every prineipal submatrix of A obtained by de-
leting two rows.and eolumns is positive definite. A repetition shows
that the posjtive definite property of A carries over to all of the
principxg batrices of 4.

By {heorems 5-9 and 4-9

|| =[PPl = |P"|. |P| = [P]2 > 0.

N\,
sfhus every positive definite matrix has positive determinant. This
fact together with the first part of Theorem 5-10 proves the last part.

ExEercises

1. A quadratic form f and its matrix A are called negative semidefinite if all
values of f are < 0, and negative definile if these values are negative except

when all the variables are zero. State and prove the analogue of Theorem
58 for thege doncepts,
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2. Let f be 4 quadratic form over ®. If f assumes both positive and nega-
tive values, show that f can be given the value zero for values of the varinbles
which are not all zero. State and prove a partial converse.

3. Let f be a quadratic form over B with nonsingular coefficient matrix,
Prove that f is positive or negative definite if and only i f 7 0 whenever the
variables are given values which are not all zero.

4, Prove that the real quadratic form ax} 4 2bair; + cxf is positive
definite if and only if 2 > 0 and |4] > 0, where A is the matrix of the quad-
ratie form. )
VA, An expression oy 4 - - 3 Cas I8 8 Hnear form In %y, ..., Tw, and 53
nonzero lincar formt if ut least one eoefficient ¢ iz different from zero. 'P\r’oye
that if & quadratic form f = X'AX is the square of a nonzero linear fonn;"4
hasrank one.  Is the converse true without restrictions on the field of wealars?

6. In Excreise 5 let & be the field of sculars. Prove that f is@ Product of
two nonzero linear forms if and only if A has rank one, or rar% #wo and index
one, < }

7. In Exercise 5 let © be the scalar field. Prove that s a product of two
nonzero lineur forms if and only if A has rank onedrtwo.
R& .

"5-6 Skew matrices. A square matrix(his called skew (also skew-
symmetric or allernate) if A’ = —4, M\A = (ay), this is equivalent
to the requirement that a4 = —as; .f'gi'}h.ll ¢and j. Then in particular
each diagonal element a;; is equal'be 1ts negative —a.;, 8Q that 2a:;; = 0
and a;; = 0, provided that L= 1 # 0. The latter assumption will
always be made here, so p%g‘at we can conclude that skew matrices
have zero diagonals. &8~ ]

‘Each matrix B = P44 P congruent to a skew matrix is also skew:

(P'IPY = P'A'P = P/(—A)P = —(P'AP).
The clags of gl(é}"matrices over a fixed field ¥ may thus be studied
for canoniggliscts relative to congruence. In view of the fact that
no such .éig?t is known for symmetric matrices except when the field
is Sg}?m‘é;’ly specialized, it is interesting and surprising to find that we
ca With very little effort get a canonieal set of skew mairices over &
gengral & in which 1+ 1 = 0.

“THEOREM 5-11. Fach skew matrix A over @ field F (in which
1+ 1 5 0)* is congruent over § to a matriz B = diag (Ey, . . ., £, 0),
where 0 s a zero mairiz of suitable size (possibly absent),

* The theorem and its proof are valid if this assumption on § is replaced
by o “'eff‘km‘ assumption — narmely, that the skew matrix A has zero diagenal
{which is restrictive only when 1 + 1 = 0).
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01
E; =

-1 o)
and 2s is the rank of A.

IfAd=0take B = A, Otherwise A = {e;) # 0and BVETY a4 = (),
80 that some
Qi = —@;;=¢ = (),

Interchange of row ¢ with row 1, and row j with row 2, follogwed by
the corresponding column interchanges, replaces A by g cgngruent
matrix €, also skew, such that ¢\

N\S ¢
¢ ¢ _roc _ O\
¢= s 04]’ Cr= [:—c O:I N

Multiplication of the first row and first column b_y:g‘ii ‘may be eflected
by a congruence, so that wo may assume thap N_)

A IR DU

G=l_1 of=F»
tions to make the first column of Cq 2ero; the corresponding column
operations make the first row of Cazero. (Do not compute to prove
the latter statement, Merelycusé the fact that congruence replaces
a skew matrix by a skew n}atrfﬁ.) Likewise the second column of (5
may be made zero by useldf the +1in €, and the second row of Ce
‘may be made zero alsg.i ) Thus 4 is congruent to a matrix

X \\ . [ El 0

If 4, = 0 the x:fg)}lst-ruct-ion is completed.  Otherwise the process may
be repeated.{ This shows that 4 is congruent to a matrix B of the
type deseribed in the ‘theorem. Since the first 25 rows of B are

Iineaﬂ:):r independeat, and the others zero, B has rank 2s and sodoes A,
. Thigeompletos the proof.

. THEOREM 5-12. Ty 5 % g shew matrices over g field in which
141 5 0are congruent if and only if they have the same rank.

I . . - - -
. There are many reasons for interest in skew matrices. One of

tthem is that an arbitrary square matrix over F (in which 1 4+ 1 = 0)
s expressible uniquely ag o :



5-7] HERMITIAN MATRICES 97

(19) A=8+K,

where S is symmetric and X is skew. Suitable choices of 8 and K are
S=3A+4), K=%44- 4%,

a5 one finds by substituting these matrices in (19). Conversely, if
(19) is any expression for A as the sum of a symmetric matrix S and
a skew matrix K it is easy to show that S and K must be the matrices
above, therehy establishing the uniqueness of the decomposition (L9,

Exgrcises O\
*1. Prove that the matrices 8 and K in (19) are uniquely determi.néd\by the
given squarc matrix A, N
2. Let # he the 2 X 2 matrix K, employed in Theorem 5-11" Show that
a2 X 2 matnx P obeys P'EP = E if and only if [P} = 1~.~}‘ _
3. Find the decomposition (19) for each of the following matrices 4:

: AY;
1 2 ¢ 15 O
3 a4l -1 3 0,4
2 5:‘1’.‘

4. Find 4 nonsingular matrix P with ratmnal elements such that P'AP is
in the canoniesl form of Theorem 5-1 1, where

0 1 2 N\ 0 11 1
-1 01 o]

A=[*1 0‘%; A4=1_1 10 -2
—2 Y -1 02 o

5. Prove that A? is sfmimetric if A is skew.

6. Lot A and B pélskow matrices of the same size. Show that AB is
symmetrie if and enly'if A4 commutes with B.

7. Prove tl at 8 'skew matrix with an odd number of rows is singular.

8. Prove gh\@t“the determinant of a real skew matrix is zero or posifive.

* 5-T Hetmitian matrices. There is a type of complex matrix which
gengralizes the real syrametric matrices: 4 = (ax) is called Hermitian
i it 1 square and, for-all & and j,
(20) ’ ip, = dhj)
where a symbol 4 always denotes the conjugate of the complex num-
~ ber g, Let,

_ A = (&)
denote the matrix obtained from A by replacing each element by its
Conjugate, Ag may be expected, 4 is called the conjugate of A.
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Then the definition of a Hermitian matrix is that it iz & eomplex
matrix 4 which is equal to its conjugate transpose:

A=A,

H A is real and Hermitian, it is symmetrio.

Some facts about ecomplex numbers z = g + ¢ should be recalled.
The conjugate of 2 is Z = o — bz, whence 2 = 2 if and only if = is reul.
Then (20) with j = & shows that every diagonal element of & Her-
mitian matrix is real. Recall also that the sum and the produyét of
compiex conjugates are real: O\

_ 2+2=20, 2Z2=0*412 O
Finally, we must know that the conjugate of a products\the product
of the conjugates: ' D

e =, = m\
2130 = 2+ &, )
Hermitian matrices are of interest in connection with Hermition

3

1,...n
7= zfﬂhﬁﬁ (K= G
5 W\

These resemble bilinear forms ovEE'® with coefficient matrix required
to be Hermitian. There ig, hleever, the added property that the
second set of variables congists of the conjugates of the first. If the
coefficient matrix happen& te be real and the variables are restricled
to heing real, f reduc,e%ﬁa & real quadratic form. Even without these
specializations, however; the values of a Hermitian form are always
real. N\

"The proof of*this property begins with the facts that each diagonal
element ax, igweal and each product .2, is real, so that all diagonal
terms N\

N\ s,

are x’geﬂ. The remaining terms fall into pairs

\ )
Each such pair is real because it is the sum of & complex number and

its conjugate. This proves the assertion, (See Exercise 2 of this
section for & shorter procf!)

ATy + Gpdimy, = Quinx; + (G;q'i;;xj).

THEOREM 5-13. The values of a Hermitian form are real.

A nonsingular linear change of variables has the appearance
X=PYV,X=col (2, ., » @), and necessitates the formula
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(21) X=P7,
where X = col (&1, ..., 2.), ¥ = eol (gy, .. ., 7). To carry out this
substitution we first write the form f above as a matrix product:
J=X'AX = (PYYAPY = V'P'APY,
The new coeflicient matrix is Hermitian:
(P'APY = (P'APY = (P'A'P) = P'AP.
This gives un analogue of Theorem 5—1. A
{
TueorEM 5 14, A nonsingular linear substitution replaces @\Her-
mation form with matriz A by a Hermitian form with matyiy .\Z-"’AP,
P nonsingular. N

. D
If the complex matrices B and A satisfy an equation}\
B=PAP, A\

where P is nonsingular, we say that B is conjunéiive to A, or Hermitely
vongruent to 4.  Hermitian congruence (gr eonjunction) is an R8T
relation, O

R
R

Exmnq&i}é

*1. Prove that Hermitian congruentess an RST relation.

2. Prove divcetly from f = X ’é:X that Hermitian forms are real-valued.
Hint: Show that f = = f. ¢

3. Let 4 and B he Hernﬁt@ﬂ matrices of the same size. Prove (1) that
A - B is Hermitian; (2) #hat AB is Hermitian if and only if AB = BA.

4. Show that if 4 is(dny rectangular complex matrix, AA’ and A’A are
Hermitian, W

5. If 4 is }Iernii;t}an, show that A’ and A are Hermitian, and also 4~
ifdis nonsingylar .
*6. If 4 is\Hcrmitian, so is e.4™ + --- + a4 + el for arbitrary real
sealars oy and uny positive integer m. Prove this fact.

7. 8haw’that the range of values of 3 Hermitian form is not altered by
ﬂtmsi}gu]ar linear substitutions.

~ 5-8 Reduction of Hermitian matrices. The reduction theory for
emitian matrices under conjunction is an almost perfeet analog,ue
of the theory in Sections 5-3 and 5-4 for symmetric matrices relative
to congruence, and the proofs require only minor changes. ]
The analogue of Theorem 5-4 is readily discovered: B is Herrmte]y
ongruent to A4 if and only if B = Ej[---(E{AE)) - - -]Ex, each pair
n B} fepresenting an elementary column operation and the “con-
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junctively corresponding’ row operation. That is, if F multiplies
the jth column by ¢, E' multiplies the jth row by ¢; if E adds ¢ times
column j to column &, E' adds ¢ times row 7 to row k; if B interchanges
column j with column £, E” interchanges row j with row k.

With this tool we may follow the proof of Theorem 5-5 in proving
that every Hermitian matrix 4 is Hermitely econgruent to a real
diagonal matrix in which the number of nonzero diagonal clements is
the rank of 4. The major patchwork oceurs in the constructiopof
bis in (11), which is now twice the real part of as; and may be 2ro.
If s0, as; must be pure imaginary, az = ic » 0. We then ‘miedify
the construction of B = (b} by adding ¢ times column j td ¢plumn &,
and (necessarily) then —¢ times row j to row k. This(gi‘.i{es

b}m = ?,'a,”- — z'a,k = z'(a;,i,- — a,—h) ¢ ;"
= ¢(ic — 7c) = i(ic + 3¢) = —2¢ Q})
The remainder of the proof is valid without\change, provided that
“corresponding row transformation’ is alédiys interpreted in the
conjunctive sense. The diagonal mapri:{* finally obtained is con-
junctive to A, hence Hermitian. Since‘the diagonal of a Hermitian
matirix ig real, B must be real, .;.’:"

Suitable interchanges of rowssand of columns replace B by a con-

junctive {and congruent) mati‘ﬁf

D =digg\dy, ..., d,0,...,0),
in which p \‘
dp>0, & <0. (h=1,... pij=p+1,...,0
Exactly as in théproof of Theorem 5-6, I is Hermitely congruent to
diag (I, ~Ipnpo ).

. Tnyo i 5-15. Every Hermitian matriz A of rank r is Hermitely
caqggvu}'nt to & mafrix

*

o Lr 0 0
™ B=|0 -I5_, 0
; 2 —

\ 0 0 0

- The inleger p is uniquely determined by A.

. The uniqueness proof for Theorem 5-6 is still valid. The integer p
is called the index of the Hermitian matrix 4. The test for Hermitian
eongruence then follows quickly:

TreorEM 5-16. Two n X n Hermitian matrices are Hermilely con~
gruent if and only if they have the same rank and indez.
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Since the vulues of a Hermitian form f = X’AX are real, positive
definiteness of [ and of A may be defined exactly as for quadratic
- forms and symmetric matrices over ®.  (See Section 5-2.) The fact
that nonsingular linear substitutions do not change the range of
values of f implies the analogue of Theorem 5-8.

THEOREM 5-17.  An n X n Hermitian matriz of rank r and tndex p

18 positive semidefindte if and only if p =r, and positive definite if
candonly if p=r=n.

Hereafter, when a matrix A is called positive scmidefinite or defi-
nite, it will he understood without explicit statement thaj;,\'ff’"}s
Hermitian (hence symmetric if it isreal).  The reader may thenprove
for himself the [ollowing extensions of Theorems 5-9 and §-10.

THEOREE\& 5 18, A complex matriz A 1s postiive deﬁn?«té if and only
f A =1P'P, where P 1s a nonsingular complex iz, Moreover,
i A is positive definite, |A| and all principaloSubdeterminanis are

7

positive. ¢ N\

EXERCISES W
R

_ X

L. Prove Theorem 5-18. s\ :
2. Bhow that the index of a real g¥mmetric matrix A, as defined by
Theorem 5-6 awd Definition 3, is the sime as its index p as given by Theorem

5-15, {
© 5-9 Skew-Hermitian, matrices. A complex matrix A = (ax) is
called shew-f7 crm-z'lz’a.n.irf, the case where
“\ A=A

or, what is m;ﬁN‘alenL, @n = —an for all b and j. If 4 is skew-
Hermitian adireal, it is skew, and every real skew matrix is skew-
‘Hel'l'l'ﬁtian.: SWIf B = Prap is Hermitely congruent to A, then B also
18 skew Eprmitian.

The Hermitian congruence of Hermitian matrices and the con-
gruence of real Hermitian matrices are analogous theories, leading,
48 we have scen, to identical canonical sets. It is not true, however,

th.a’_ﬁ a like analogy holds for the Hermitian congruence of gkew-Her-
Mitian matrices and the congruence of real skew matrices. The latter

leads t0 a canonical set having diagonal blocks

(22 [_{13 é]



102 CONGRUENCE AND HERMITIAN CONGRUENCE [cnae. 5

whenee follows the property that a real skew matrix has even rank.
But the matrices ’

i 00
@, |0 2% 0|
00 3

are skew-Hermitian and do not have even rank, and thercfore cannot
be Hermitely congruent to a direct sum of matrices (22).

This disappointment is compensated by the existence of .afvery
simple theory of canonical sets for skew-Hermitian matriceg b It
starts with the observation that the matrices 74 arve Ievinitisn.
Let us consider H = —44: . QO

-

H = +id’ = i(—A)= —id = H,
Then there is a nonsingular complex matrix P guéh\ that

i I, 0 NP
PHP=B=(0 ~14y0/;
0~ 0
so that, using i = §(—i)A = A, we fild that
iF'HP SPAP = 4B,
L 0 o
(23) PaP=T0 —if,_, 0]
{\ 0 0 0

Thus every skew-Hewmitian matrix 4 is Hermitely congruent fo a
matrix (23) in which r is the rank of 4 and 7 i the index of —74.
The fact thagsthe diagonal elements in (23) are pure imaginaries
should not{\be’ surprising, by virtue of Exercize 1 below. Also, a
necessfoa‘nd sufficient condition for Hermitian congruence of two
skewdlermitian matrices, to be expected once a canonical set has
bg?pffound, is given in Exercise 2.
\ ) Exercises
' 1. ‘Prolve that if A is skew-Hermitian the diagonal elements of A are pure
LHMAFINATIES O 2&r0,

2. Show that two n X » skew-Hermitian matrices A and B are Hermitely
congruent if and only if they have the same rank and —iA and —{B have the.
sare index. Show also that the latter may be replaced by the requirement
that £4 and B have the same index,

*3. Let 4 be a square matrix over €. Show that 4 is uniquely expressible
in the form 4 = I7 + 8, where H is Herritian and 8 is skew-Hermitian.
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ArreEnDIX

- 6-10 Rank of a Hermitian matrix., The result presented in
Theoremn 4-11 shortens the work of determining the rank of a matrix
by means of subdeterminants.  For Hermitian or symmetric matrices
the work may be shortened further,

Tueores 5-19. Let A be symmetric or Hermitian. Then A has
rank v if wul only if A has an r X r prineipal submatriz which isz

nonstngular, and no larger principal submatriz which is nonsingulgr.
¢SO

It thus suffices to examine only prineipal submatrices when seeking
the rank of 4. The number of submatrices to be examined\may be
redueed still further. AN

&

Trvomrm 5-20. Let A be symmeiric or Hermiliathy Then A has
rank v of and only if A has a nonsingular r X r pripgipal submatriz S,
such that every principal submatriz of A conf@‘m’ng 8 and one or
two additional rows and columns is singuld)

TarorEM 5-21.  Let A be symmeiric ot\Hermitian. If oll principal
submatrices having r + 1 rows or rek 2 rows are singular, the rank
of 4 does not exceed r. N

For all three of these resulti‘“see Reference 6, pp. 79, 80.
g im }

- B6-11 Positive definiteiess. Theorem 9-26 (part of which is
proved in Theorem 510 presents a criterion for positive definiteness
of 2 Hermitian mafr$4: |4 and all principal subdeterminants shall
be positive. Thé>¢¥iterion is capable of considerable simplifieation.
Tet 8; denote\’{‘:}}é'submatrix of A taken from the first j rows and
eolumns. .'J\

TrEGREM 522, Let A be an n X n Hermitian matriz. Then A
is\ﬁoéitz've defintle if and only if all n submairices 8; defined above

have positive determinants.

For proof sce the article “On positive definite quadratic forms,”
by L. 8. Goddard in Publicationes Mathematicae, Vol. 2 (1951),
BD. 46, 47, or Reference 7, p. 138, or Reference 13, p. 91.

B9 Congruent automorphs. If PSP = S, the matrix P is called
& congruent (or cogredient) automorph of 8.
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Treorem 5-23. Lel 8 be a nonsingular, symmetric matriz over ¥.
If K is any akew matriz over § such thal (8 + K)(S — K) 15 non-
singular,

(24) P=(S+K)'(S—-K)
is @ congruent aulomorph of S.

The proof is given by the following computation, in which 7" denotes
the matrix S7K:

P=[SU+DSI-T) =T+ T -1T),
P= (8 —K}S+K)yt=(S+K)(S—- K
: =8I +TUI -1 m—
PSP = S(I+ T)(T — T)2878(I + T)~(I — )
=S+ MUI+DHIT =D —T)o
=ST+ D - THT+ DI = T)\
=S+ T)I + Ty — Ty M{L=NT)

= 8. N

Turowkm 524, Let & be a field i :w};,\wh 1+ 1 %0, and el 5 be
a nonsingular, symmelric matriz, dudr . Then the matrices P of

Theorem 5-23 constitule the Lolamy of congruent automorphs of S
such that I -+ P is nonsmgu@'g

Q"

Each matrix P of ithe "pl';eééding theorem has the property that
I + P is nonsingular, fo{ :

T+P=I+(S+K(S—-K)
S+}§)(1+P) S+ K+ 8~ K =28,
Since 28 = (S45K)(I + P) is nonsingular by hypothesis, I -+ P also
must be ngxk&mgular
Conyefsély, let P’SP = 8 and let I 4 P be nonsingular. We must
find ::Q{éw matrix K such that (S + K)(S — K) is nonsingular and

(249 holds. The equation {24) is the elue to the matrix K. Consider
«fhé equation '

(20) S+KP=8—-K,
in which K is an unknown matrix. Then:
K+ KP=8-8P=S8SJ-P),
KI+P)y=81I1-mP,
(26) K=8{-PyI+ P
The matrix (26) will be shown to fulfill our requirements. We regard
(26) as definition of K, the preceding work merely showing how one
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might be led t; this definition. Since the steps are reversible, how-
ever, (26) leads (o (25). It remains only to prove (i) that K is skew
and (ii) that .5 -- K is nonsingular, whence (23) will clearly imply the
validity of (2-1).
To prove (i) we compute as follows:
N4+ K=8I+{-P)YI+P)
ST+ P+ —-P)I+P)?
S2II + Py =28(I + P)~.

L:vity of the factors on the right implies that of S + &,
compute as follows: o

N/

i

The nonsing::
To prove (i) w

TPy T = [T+ Py = T4+ P)Y, o\

K'=(+P)yMI-P)s D
— (I+1);)_1(S_P.FS) u\
= I+ P78 — 8P,
: A\
sinee <!
(27) PSP =8, PS=8EY

the nonsinguisrity of P following from‘j;}‘iatﬁof 8 =P'8SP. Then

K=+ P’)—lmSQf;i P
(ST 4P - P
= (S KSP) I - P
— (@ PsU - P,
since (27) implies that N\,

:,’\’,‘ S-1pf = P81

Thus \\"
K = [(I+ PHYSTU - P
A =8I+ P - P
) = S(I + PPt P(I — P7)

Q~ S+ PpYyEP - 1)
S+ D(P-1I)
= —S{ 4+ P)\({ — P).
But (14 P)1ig a polynomial in I + P, hence in P, with scalar co-
efficients, so that (I + P)~ surely commutes with £ — P, The last
equation above may thus be written as
K’ = —8(I - P)y{I + P)* =K.

This completes the proof.

N



106 CONGRUENCE AND HERMITIAN CONGRUENCE [cnar. 5

One application of congruent automorphs is to be found in Sec-
tion 9-18. Another possible application may be discussed now in
connection with the congruence of arbitrary square matrices. If -
we seek a canonical set of matrices to one of which every square
matrix 4 is congruent, we might proceed as follows. Let

A=8+K,

where S is symmetric, K is skew, and both are z X . This de-
composition is possible and unique (provided that 1+ 1 » 0)., Fhen
K is congruent to a canonical matrix

’\:\
GEKG=K,, = diag (¥, ..., £, 0); & = I:_‘?‘ \é\] |

as in Theorem 5-11, and N

QAQ = Ay = 81+ Ky LY

where S, = '8¢ is symmetric. Thus we may assume at the outset
that 4 = 8 + K,,. We now wish to perfgrhr congruences which do
not, disturb K,,: \

4 =84K,—PABRSP'SP + K,

Thus we seek nonsingular congrj&éﬁt automorphs P of K,,, and in
the class of all such matrices R wé wish to choose one such that P'SP
is as simple as possible. I short, the problem of finding canonical
forms for arbitrary square ‘matrices under congruence will be solved
if it is solved for sympdeitic matrices relative to the restricted type of
congruence L\

N\

Y S—)P’SP,

in which P ig"a ¢ongruent automorph of K,,.

In the g{aiq}"in which K is nonsingular s modified treatment of this
problethis/given by John Williamson in the paper, *On the algebraic
pro‘p@g}m concerning the normal forms of linear dynamical systems,”
Aaterican Journal of M athematics, Vol. 58 (1936), pp. 141-163.

N
N\

\w5—13 M_a:uma and minima. Let f(z,, ..., .) be a function of
n real variables &y, ..., x,. For convenience we may let
T={T, ..., )
and write our function simply as f(z). Let ¢ = (¢, ..., €.) be a
veetor of constants. Then f(z) has a relative minimum at z = ¢ if

(=) - fle) is always positive when « is different, from ¢ but in some
suﬂimgntly small neighborhood of e, Similarly f(z) has a relative
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mazimum at x = ¢ if f{x) — f{e) is always negative for z different from
¢ but in some neighborhood of e.

It is inferesting to note that quadratic forms may be associated
with the problem of determining whether f(2) has a relative minimum
or maximum at x = e.

TEEOREM 5-25. Let f(x) = flxy, ..., x.) have partial derivatives
up to and tncluding those of order three, which are confinuous in a
neighborbood of 2 = e.  Let the first parital derivatives of f(x) be zervoy
Jorz =¢, and let N
8 ¢\
o= . '\
f" dx;0x; g ™
evaluated af x = c. Then flx) has o relative mz’m’mum,f(oi‘" relative
maximum) af T = c¢ if the symmetric matriz A = (fi;) is positive
definile (or negative definile). \4

Under 1he hypotheses it is known * that a pqebséary condition for
& relative minimum or maximum at = = ¢ dg-that all first partial de-
tivatives of f(2) shall vanish at = =¢. (Ben f(z) has s Taylor’s
expansion about & = ¢ of the followiqg»t}yﬁe:

J(x) = fle) = ZhFuhi + R,
where ;= 7, — ¢; and R is a S‘Temainder.” When # is sufficiently
close to e (that is, when all thé differences h; = ; — ¢: are numerically
< d for sorae d which is {ﬁifably small) the remainder R is known
to be negligible in compe;gison with
&7 Q= 2Ry

In particular thealgebraic sign of f(z) — f(c) is that of @ if ail the ks
are sufficiensl§_small, Thus f(z) has a minimum at  =c if the
uadratic fGrm () assumes only positive values when 0 < |id < d,
*=1,. 5%, The latter property in turn is true if and only if @ is
bositivefor all values of the h; except by =--=h,=0. (Why?)
:I:h Sf(2) has & minimum at x = ¢ if 4 is positive definite, and the
Msult” follows similarly.

* See any text on advanced ealeulus.
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POLYNOMIALS OVER A FIELD

6-1 Polynomials. The notion that a polynomial is some expres-
sion with “many” terms is not only inaccurate, but also guilty of the
fault that it entirely bypasses the main ideas associated witk ‘poly-
nomials, Let § be a field and @ be an ahstract symbol,a Further

. . S
symbols or “expressions” may be obtained by maniprlatibg  and
the quantities of &, subject to the usual rules of algebray” If in these
manipulations with x and the quantities of F u-'e}é’rﬁ'ploy only the
operations of addition, subtraction, and multiplication, all the sym-
bols or expressions obtained are called polymdanials, or, to be more
cemplete, polynemials in x over &, O

Thus | -z = 2 is a polynomial in z. \If\ﬁ =@,

fz) = 3z 2 V2
is a polynomial. Neither divisies nor the square root process have
been used in construeting f () ;ﬁﬁée tand V2 are in &; only multipli-

cation and addition have been used. It is clear that any expression
of the form )

(1) 1) ?Ch»" + epga 4 + e + ¢,

with all the ¢; in ?r}\m a polynomial. Conversely, every polynomial
in z may be arranged in the form (1), so that polynomials over § can
be defined g%l expressions of the form (1) with coefficients e; in 7.
The pql;.\m}ﬁlial (1) all of whose coefficients ¢; are zero is called the
zero palynomial,
Zhe'totality of pelynomials in « with coefficients in ¥ is denoted by
:ﬁ{z]"(mad “F bracket ") and this set F[x] is called a polynomial do-
<\} main over §.  If we abandon the notion of z as a variable, we may
regard each polynomial J(z) a9 a single, fixed entity, a member of the
set ¥{z]. Regarded as a number gystem, F{z] has many of the proper-
ties of a field as listed in Chapter 1 (all but M4). These amount o
formal statements of well-known laws. The commutative and dis-
tributive laws say, respectively, that the equations

T2)g(x) = g(=)f (),
f@)g@) + Mz)] = f@)g() + f@)h(x)
108
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are universally true. In brief, the usual manipulations involving
gums, differcnces, and products are valid in $(z]. The invalidity of
postulate M4 means that not every f(x) in F[z] has an inverse in
#z]. Certainly for f{z) = x we ean find no g(z) in ¥z] such that
a2} = 1.

The quantitics of & are members of F[x] and are called constants or
constant polynomials, The nonzero constants are the only quantities
of 5[x] which hsive inverses in F[x]. The zero constant and the zero
polynomial are the same quantity of F[z].

If the eoefficient ¢, of f{z) in (1} is not zero, f(z) is said to have\
degree n, and we write N

n = deg f(z) Y

to indicate this degree, This definition implics that the, d('gree of 2
nonzero constani is zero. (Why?) The degree of th‘e zero poly-
nomial ig not defined at all. It then follows that if f(x) and g{x) have
degrees, say r and s, f(z)g(z) has degree r + s: /"

@) ot Ao = deg 1) + QYD)

‘This formula (2) has some CONSeqUences Yhat are worthy of note
Supposce that gx) = 0 and f(z)g(z) =, @%" It follows that f(z) =
For otherwise both f(z) and g(z) hayes degrees, and (2) implies that
f@)¢(z) has a degree, which is a, contradiction.

Another consequence is the {amiliar process of cancelling & com-
mon factor (provided it ise r@t zerol). Suppose that

h(x)glw) = j(=)g(@), g} # 0.
fhen thiz)y — gl )]g(,s)\_ 0 so the property just proved implies that
the polynomial n¢ Brickets is zero, whence h{z) = j(x).

If f(z) in (l}\a\s degree n, the coefficient ¢, is called the leading co-
efficient of /i ( JoN IS its 1ead1ng coefﬁuent is 1, f(z) is called monic.

6‘2”111V131b111ty Given polynomials f{z} and g(z) over F, we say
that ?&rj divides f(z) if

) f@) = g@h()
for some h(z) in ${z]. Also glz) is called a factor of f(z) and (3) is a
W _

* That is , TGz t. Unless the con-
g{x) is the zero polynomial but g(z) is no
text makes the contrary clear, an equation A(z) = ¢ will indicate that hix}
€ %10 polynomial, and will not indicate that we are seeking scalars ¢
Such that k() — (. _
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factorization of f(x) over &, this latter phrase indicating that the factors
g(z) and A(x) have coefficients in ¥ Thus over § =@, - 1 and
2 — 1 both divide 2> — 1. 8o does 3z + 3, since
#— 1= @+ 3 — ),
both factors on the right lying in ®[x].
In-general, if g{x) divides f(z) and ¢ is any constant = 0, ¢ - ¢g(z)
also divides f(z), sinee
f@) = g(@}h(z) = ¢ - g(@)[c R ()]
- with ¢7Yh(z) in ¥[z]. In particular

f@) = e (@), 3

774
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so that every nonzero constant divides every polypomial. A fae-
torization into two factors, of which one is a coﬂ’g\tant, will be called
a frovial factorization. \

The possible factorizations (3) of a pq&nomial depend on the
constant field 5. Suppose, for examples that § is the rational number
field. Then f(z) =22 — 2 has no fabtsrizations other than trivial
ones.  But the same polynomisl 22~ 2 belongs to &[z], which has a
larger constant field than the yaﬁbnals. Here we find that

2= 2= — V2)(z + V?2),

s¢ that 22— 2 factorsm ’W::er ® but not over the rationals. Again,
2+ 1 does not fac!:O{iQVer ® but does factor over €:

gqﬁ\+ 1=+vV=-DE-+v—1).

Derivitzodnd” A nonconstant polynomial over ¥ is called #rre-
ducible ofer™5 if all of its factorizations into twe factors over F are
triviall)
Thﬁ.'z\ ¥ — 2 i irreducible over the rationals but not over ®, and
" #1 is irreducible over & but not over @, Irreducibility of & poly-
_ Bomial with coefficients in  is property which may be lost when a
larger constant ficld is contemplated.
The familiar process of long division of polynomials is valid over
an arbitrary field. The following theorem, known as the “divistor—-

- algorithm,” is a careful formulation of the resulf of “dividing as far
a3 possible,”

TueoreMm 6-1.  Iff(x) and (%) are polynomials over ¥ and g{z) # 0,
there are unique polynomials q(x) and r{(x) over F such that
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6-2]

) f=) = ¢(x)glz) + r(z),

(5) r{z) =0 or degr(z) < deg g{x).
Lat

f(r) = amxm+ e +alx+ Oy
_ gy = b+ - + bx + by,
whore b, # 0. 11 f{x) = 0 or deg f(z) < deg g(x), conditions (4) and
{5) are fulfilledd by ¢(x) = 0, r(2) = f(x). Now suppose that f(x) hag A
degree m = n. Then

' KoY
7(z) — anb7ie™g(z) = i)
has lower degree than f(z), or is 0. The expression ~\ g
ambglxm—n "2". ; f

may be recognized in connection with the usual progess Of_loﬂg di-
Yision: It is the lirst term of the quotient. Also, afz) is the poly-
nomial found after the first subtraction in the Joflg division process.
If the degree wy of fi(x) is = n, and if jsh'{a?leading coefficient of
Fi{z) is denoted by ¢, we again subtract a pdultiple of the divisor g(x):
FxY — anbrlem—rg(r) — cbg%xi"“l_“g(x) = fa(2).
If _deg folx} 2 n, the process is regéabéd. The important feature of
this procedure i that o
deg f(x) > @j@‘l(x) > deg folz) > e
Writing £ = — n, we avéa ually find an expression of the form
@) — katg@ = kaatg(z) — - -+ — kgla) = (@),
whete r(z) = 0 ovaleg r(z) < n. This 7(z) and
s
’x,..: gla) =zt + kax™t 4 - - -k,
fulfilt cong}iﬁons (4} and (5).
FOK{- i) Uniqueness, suppose also that
Y% f@) = p)glx) + s(s),
here s(z) is either the zero polynomial or a polynomial of degree
less than n.  Then
© [p(z) — g(@lo@) = r(@) — 8
!f e 10 sides of {6) are different notations for the same polynomial
(). From the right side of (6)
@ h{z) =0 or deghlr) <=
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From the left side of (8) we see that if p(z) — ¢(x} is not zera, A{z)
has degree = n. The only tenable conclusion is that p(x) — ¢(z)
and h(zx) are 0, so that

p(z) = q(z), slz) = r(z).
This asserts the uniqueness.

The polynomial #(x) is called the remainder of f(x) under division
by g{z). An interesting ease is that in which ¢(x) is a4 monic 2013%
nomial of degree one, ¢{z) =2 —¢. Then flz) = ¢(&) - {x =8
where r is a constant, O\

r=f@-g@) @0, O

Ny

Replacing & by ¢ gives r = f(c). :":'«.

CoroLnaRY 6-1A. When f(x) s divided by &%?: the remainder is
7).
In application of Corollary 6-1A supposb’that ¢ is a root of f(z),

that is, f{¢) = 0. Then ~N\
7@) = 4@)@ — o) + F@= o) - (& - o).
This gives another result. .n’j"

CoroLLany 6-1B. If ¢ zs a mot of f(z), x — ¢ is a factor of flx),
and conversely.

The converse readg'\lf fx) =q@)- (x—¢), ¢ is a root of f(x).
But this is obvioudk ™

The division @igorithm (Theorem 6-1) settles questions as to
whether a glVeQ polynomial g(x) = 0 divides (ot is a factor of ) another
glven polyx\omml J®). In equation (4) g(x) surely divides f(z) if
r(z) =0¢Yut not otherwise. For, if g(z) does divide fiz), then
flx) = %@7)9@) h{z)g(z) + 0. The uniqueness in Theorem 6-1 then
1mp11es that ¢{z) = A(z) and r(z) = 0. This gives:

\ “CDROLL&RY 6-1C. If g(x) divides f(x), the remainder r(z) n (4)
18 zero, and conversely.

ExERcISES
1. If f(x} and g{z) are nonzero polynomials in F[z], find a necessary and
sufficient eondition that they shall divide each other,

- 2 G}E‘IPFCSS each of the polynomials f(z) below in the form (4), tuking
O o=

(a) f(x) = :G‘+4:r3+4:52-—7 o(z) = 22 + 1;

(b) fl@) =2 — 32+ 55 46, g(x) — x — 2.
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3. If f{x) divides gl and 2(x), show that f(z) divides glx) & A(z).

4. Let & bea fichl enutaining the field F,and let f(x) and g(x) > 0 belong to
Fal. Show that il fle) = g{adh{e) with k(z) in Klz], then A(x) lies in Fz].

3. Show that the process of eancelling a nonzero factor g(z) from an equa-
tion hu(x)g(x) = iloiy() may be justified by the uniqueness in the division
algorithin.

6-3 Greatest common divisors. If a polynomial g{z) divides both
() and folx), yie) is u commeon divisor of fi{z) and fe(z).

DeFintriox 2. A monic polynomial d(z) is called the greaﬁests\

common divisor of [y(z) and fu(z) if ' AN
{2) d(x) is n common divisor of fi(z) and fu(z), y >

and .

(b} every common divisor of fi{z) and f{z) is a diX{j‘s’Qﬁ’éf d(z).

If a polynomial d(x) is found with properties (a)\afid (b), then -

k-d(z} will also have these properties for evepyp eénstant & # 0.
In particular, 1 may be chosen so that k. dfc}”is moniec. Thus
{a} and (b) wre the erucial properties to seek intco:nst-ructing a greatest
eommon divisor, the property of monicit:y;pemg eagily achievable.

THEOREM § 2. If fi(x) and folx), a;é"’polynomials over &, not both
2ero, they have o greatest eommonsdivisor d(x) in . Moreover,
d(x) is wnique and s f?:r:pressz'l{hz as
4
®) d(z) = Kf(‘*”)}l (x) + po()fe(@),
where pi(z) and po(z), Helong to F[z].

Within §]x] there {9 subsct § consisting of all polynomials of the
form o)

L
9 O @A+ e@hE)
with al(x.)"@.d ax(x) varying over §[z]. Then$ co.ntains

N @)= 1- @) + 0 fils)
and likewise $ contains fle). '
s ‘Observe that (i} 8 is closed under addition and subtraction. T hat
% & sum or difference of two polynomials of the form (9) is again of
the form (M, hence in 8. Also (if) a multiple ¢(@)s(@) of & member
%) of $ by an arbitrary polynomial g(z) of Fx] is again in 8. _Ob-
rve, lastly, that § contains at least one nonzero polynomial, since
1t Gontainy fl(x) and fz(x). .

Q"
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Among all nonzero polynomials in 8, let d{z) be one of minimal
degree. We shall prove that d(x) divides every s(z) in §, By
Theorem 6-1

5(z) = g(@)d(z) + (=),

where r(z) = 0, or r{z) has degree less than the degree of d(z). By
{ii) g(z)d(z} belongs to 8, and by (i) 7(z) = s(z) — ¢(x)d(z) belongs
to 8. Then r(z) = 0, for otherwise its degree would violate ithe mini-
mal property of the degree of d(z). Thus s(z) = ¢(z)d(z), so{that
d(z) divides every member of 8. In particular, then, d(inygivides
both fi(z} and fo(z) so that d(z) has property (a). By deﬁn.itf(jn it hasg
the form (8). If a polynomial dy(z) also divides £, (z) antfu(x),

filE) = @do(a), Jola) = hal@des(ap
then by (8) S

4@ = (@) + @ @),
so that do(x) divides d{z): this is (b). As'\i'éma.rkud above, the monic
property is readily achieved. The unigteness of d(z) is left to the
reader., 'We shall use the notationy

d) = ged [i(z), o))

for the greatest common gii\‘ésﬁr of fi(x) and fulx).

+\. = ExErcises

1. Find the greate}v\com.mon divisor of each pair of pelynomials below
and express it intheform (8), always faking F = ®:
(a) 2 H B2, a2 — 1;
(b) RN+ 2+ 1, 22 4 1;
D& z+1, 2+ 1.
2. Rrove the uniqueness of d(z) in Theorem 6-2.
33 Prove that d(z) = ged [fi(z), fulz)] if and only if d(x} is a monie, common
..\c\liy‘isor of fi(z) and fy(x), which is expressible in the form (8).
N\ 4. Provethat ged [f.(x), folz)] is a monie, cornamon divisor of the Fi{x) having
greater degree than any other monie, eommon divisor of the fi{x).

5. Referring to (8), prove that d{z) = a(z)fi(x) + glw)fa(e), where
(@) = pifx) 4= ) folz)/ dz, ga(7) = palz) — m{x)fi(z)/de, and m(x) is any
“polynomial in F[z],

6. Referring to (8) and to Excreise 5, prove that the only pairs of poly-
nonials ¢(z) obeying d(z) = QE){z) + gz)f2lz) are of the type given by
Exercise 5. '

7. 1f ged (f(x), g(2)] 5 1, prove the existence of nonzero polynomials a(z)
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and B(z) such that a(x)f(z) + blz)glx) = 0, deg a(z) < deg gla), deg blx)
< deg f(x).

84 Relatively prime polynomials. Two polynomials are called
relatively primef their ged is a constant (necessarily = 1).  The poly-
nomials fi(z) = x and fule) = 22— 1 of &[z] are relatively prime,
One way of showing his is Lo ohserve that
_ 1L = zfi(x) + (—1)f2(2).

(How do you finish the argument that ged [z, 2% — 1] = 17)

- Lemma G-I, Lot p(x) be irreducible over § and let f(x) be 'aﬁg}’\
polynomial over 5. Then p(z) either divides f(x) or is re;at@ely
prime to f(a). N
Lot d(z) = ged {p(x), f(@)], so that LY

pla) = dlz)g(2), f(z) = d(@)gla)- 3

Since the first of these factorizations must be/grivial, either d(z)
or g{z) is a constant, If ¢(x) is a constant,) (x) = cp(x) whenee
f2) = ¢ p(x)g(z), so that p(z) divides f{z).> If d(z) is a constant,
p(z) and f(z) are relatively prime, \\

Lemvs 6-2.  Let f(x) divide g(x)"ﬁ(‘;;) and be relatively prime to

9(z). Then f(x) divides hix). o - '

There are polynomials a(mea}ld b{z) such that

A
b alo)f@) + bE().

On multiplieation by k(x) this becomes

hiz) = a(:r)h..(,-{):}ﬁ:) + blx)g(x)h(x) = [alx)h(z) + h(x)g @) ),
.Whp,re by h}f&l@fﬁésis g(x)h(z) = q{x)f(x). The last equation above
Shows thatef(d) divides A(z).

As ﬂk?'{mnar}' of these lemmas the reader may prove

LF}M{ 6-3. If p(x) ds irreducible over § and divides g(@)h(z),

divides at least one of g(x) and h(x).

Consider h{z) = (z — ){z + 1)% Then both p(@)=x—1 and
f(m) = (z~ 1)(r + 1) divide h(x) but their product does not. On
he other hand, there are cases where a product of two divisors of

‘_(x) s another such divisor. For example, f(z) = — .1 _and ¢(z)
T %41 divide the h(z) given above, and f(x)glx) also divides h(z).
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Levma 6-4. Let flz) and g(z) be relatively prime, Then if f{z)
and g(z) divide h(z), so does the product f(x)g(x).

" By hypothesis

h(z) = qu(x)g(=) = filx)f (x}.
Then f(x) divides gi(x)g{x}, and is relatively prime to g(z}. By
Lemma 6-2 f(z) divides gi{x),

gife) = g(@)(@), R} = g()f(x)g(2).

The conclusion is displayed by the last equation. - Q

N
RE N
Exzreises N

'\

1. Answer the question precedmg Lemma 6—1 Prove that' i tliere are
polynomials e:{x) and Ji(x) such that a(z)fi(z) + ag(x}'ﬁ,(a:) = 1, then
filz) and fo{z) are relatively prime.

2. If en(x)fifx) + wlz)falz) = g(z), where the a;(a:j‘and the f.(z) arc poly-
nomials, and ¢(z) is 8 monic polynomial, is gl N nereessarily the greatest
eommon divisor of fi{z) and fi(z)? If in additien g(x} is aszumed to be a
divigor-of f1(z) and fo{x) ean we couclude th‘sJ; g(x) = ged [fulx), f)]?

3. Prove Leming 6-3.

4, Suppose that two pulynomnh ovcr F are irredueible and distined.
Prove that one of the poly nomials: is ihe produect of the other by a constant,
or clse the two polynomials ares relaln ely prime.

5. Devise a proof for Lernma 64 which is similar 1o the proof of Temma
6-2. Hint: Express the a€lative primeness of f(z) and g(z) by a formula
like (8}. { \

& .

6-b Unique faeforization. The prohlem of {uctoring a polynomial
as far as possibld’is familiar in elementary algebra, though usually it
13 not re ve@ed there that the answer depends on the number system
employed.&

THE\C)RFM 6-3. Kvery nonzero polynomial f(x) over ¥ is expressible
m Mhe form

< 10) J&) = epul) - - pal2),
where ¢ is @ nonzero constant and the pi(x) are monde, trreducible

polynomials of z]. The expression (10) is unigue apart from the
order in which the faciors p,(x) appear.

The formuls (10) is sometimes ealled the “prime factorization”
of f(x). We begin by fa('toung out the leading coefficient ¢ of f{z):
fla) = fo(x), where fo(z) is monic. If fo(x) is irreducible over 7,
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(10} is achicved with r = 1 and pu(z) = fo(z). Otherwise there is a

factorization
(@) = g(@)h{z),

where g(z) and h(r) have lower degrees than fy(z). Moreover, g(z)

and A(z) may be faken to be monie, Since further factorization of

glx} and A(r) would lead to factors of still lower degree, this process

must lead ultimately to a set of monie irreducible factors.
Uniquencss is the main problem. Suppose that

J() = epule) - - - po(z) = o3} - - - qol2), A\
where the p.(x) and the ¢(z) are monic irreducible members of S[).
Since ¢, (x) divides the product \

nB)pa(z) - - - pr(w)] = pr(@ale), 2
it divides p(x) or hy(z) by Lemma 6-8. If qi(x).divides hu(z) the
algument may be repeated with hi(z) = pa(@)[ps(@IN- 2-(2)].  Ulti-
mately we fiud & pi(x) which qi(x) divides, ancj:iﬁbis simply a matter
of notation to take ¢ = 1. Thus N\

' (@) = 9@

Then ¢(x) must be a constant ¢1, Since pi(2) is irreducible and qi(x)
18 not a constant. (Why is q(2) gl:b‘t: a constant?} Sinee m{zx) and
0(z) are monic, ¢; must be 1. Thus py(x) = ¢{z), so that

() < k) = 2(x) - - - 0:()
by the cancellation processvdiscussed at the end of Section 6-1. A
repetition of {he arguniient leads to ga(z) = pu(z) and

AL - - - prlw) = @) - - - ()

Eventually the~palynomials ¢;(x) or p:{x), say the former, are all
cancelled Ofﬁ.\\Tf s # 7, there would be some pi{z) left, and their
Product wgutd equal 1. Since the p;(z) are nonconstants, this is
mpossible.  Hence s = 7 and every ¢:(x) is a p:(z). The uniqueness
"eqalrel in Theorem 6-3 is thus established. :

Several of the pz) in (10) may coincide. If like factors are
gathered to form g power of a single irreducible factor, Theorem .{5—3
4y be restated thus: Every polynomial f(z) over F is cxpressible
"Miquely, apart from order of the factors, as

) 5@) = eprle)a - ), |
Whel:e ¢is a constant and pi(#), . . ., p.(x) are distinet, monic poly-
fomials which are irreducible over &. ' ' o

77
& R
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The totality of monic divisors of f(x) is easily described in terms of
(11). It consists of all polynomials

(12) g@) = ;@)™ - - o),
with each exponent a; varying from 0 to e;.

We frequently use the fact that if f(z) = g(x)h(x), the prime
factorization (10) of f{x) can be found by substituting for g{(x) and
h{z) their prime factorizations.

N\
ExErcisng N
*1. Let e(x) and d(z) be relatively prime polynomials whqse( 5}};'111013 is
divisible by a monic polynomial g{z). Prove that there are tsfique monic
polynomials eox} and do() such that g{z) = eoz)de(z), &I divides o(z),
and do(x} divides d(x). ¢*0 :

2. List the fotality of monie, common divisors o“f;.\the following set of

polynomials of ®[z]:

@ ~ DN + D + 2, (ot~ Ijﬂ(x\*;,k\ix @+ - 2.

66 Some applications. The statément that m(z) is a multiple of
f(z) is by definition merely anothen way of saying that flx) divides
m(r}). Then m(z) is a commonwultiple of fi(z} and fi(x) in case it is
a multiple of each of the fi). The least common multiple of fi(z)
and fx(z) is a monic polynomisl, which (a) is a common multiple of
Si(x) and fox), and (b){h:as minimal degree. An equivalent definition
not referring to deg{é\es is obtained by replacing (b) by the require-
ment (h) that mfg) shall divide every common multiple of fi(z) and
falz). We shalbwrite

3 m(z) = lem [£i(z), fo(a)]
to indiﬁ@c'that m(z) is the least common multiple of the fil(z).
'PL@ }rime factorization provided by Theorem 6-3 renders theo-
rchglly routine the caleulation of the lem and ged of two poly-
<“n}0m1a]s. Suppose, for example, that ® is the coefficient field and that
fi#) =522 —~ 1@+ 2),  fulm) = 62z — 1)z + 1)
Then z, 2 — 1, x4+ 1, and 2° + 2 are all of the irreducible (over ®)
factors present. We may write
(13) Ni(e) = Bat(z — 13z + 1)°(z2 + 2),
fa(x) = 625z — 1) (2 + 1)2(z2 + 2)°.
Then since d(z) = ged [fi(z), f2(2)] is a divisor of each of the fi{(x),
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it is by (12} a product of powers of z, s — 1,z + 1, and 22+ 2:
d{x) = xuf{x — 1)%2(z + 1)ms(a? 4 2)u
Each exponent a; must be the smaller of the fwo corresponding ex-
ponents in {13), that is: e, must be the smaller of 2 and 5, @, the
smaller of 3 and 1, gz the smaller of 0 and 2, and @, the smaller of 1
and 0. Thus
diz) = a¥x — 1).

If a larger exponent a; were used for any < the polynomial d(x) obs \
tained would not. divide both of the fi{z). If a smaller a; were p@;ﬁd,
d#(x) would divide both fi{z), but would not be the “greatest™ suth
divisor. Ny '

The lem is constructed by the same process except thab the larger
exponent 1s used in cach case. In the example, AN

lem [£1(2), fa(e)] = #8(z — D@ + 1PEFD).

The generaiization of both processes to arbifyary polynomials over
arbitrary ficlds is immediate. o)

EXFERCISES),
L. Find the ged and the lem of each efithe following pairs of polynomialg
n Rz N\

fa) o8 — 1, 22 —1; 2z
(b} ot — 2, g% + 222 £Q) .
2. Prove that ged [f(x), g(\:(j}.-lcm [f(x), g(2)] = f(x)g(z) for f(z}, g(x) monic.

&7 Independence ftom §. Suppose that fi(z) and fo(x} are poly-
omials, not hoth Zeth, with coefficients in a field . Then Theorem
62 provides a ynidue d(z) = ged [fi(), fo(x)] within F[z].

Howeveraif 5 "is contained in a larger field X, for example § = ®
and & = ¢f"ten fu(z) and fofz) also lie in X[z] and may have many
Hhors d.iifif'iors in ¥[z] than in #z]. It is conceivable that fifz) and
highhay have within %[x] a ged, D{z), which is different from their
ged, @(x), found in the smaller system, F[z]. Actually this does not
bappen: D{z) = d(x), as we shall see.

TrrorEm 64, If fi(e) and fa(x), not both zero, belong fo Sll,
their ged within Fx] is also their ged within X[x], where X is any field
Containing T,
Let ged [f,(x), fo(z)] within Flz] be

(14) dx) = p@)fu(s) + p(@fol)
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and let D(z) = ged [fi(2), fo(x)] within X[z]. Since d(x) belongs to
X[z} and is a common divisor of the fi(x), it certainly divides D(:c)

(13) D(z) = a(z)d(z).

But .
Jila} = b{2)D(=), Z=1,2)
where the b.(z) are in %[x]. Substituting in (14) we find
d(z) = [pa(x)br(2) + pa2)0e()1D (2} = b(x)D(z).
This. re&ult and (15) yield
D(x) = a(2)b(x) D). «I\

Since D{z} is not zero, a(z)b(x) = 1, so that the polynomlals aflz) and
b{x) must he nonzero constants. If a{x) = constant_# Mis cmployaed
in (15), the fact that D(z) and d(z) are monic im}{liés that a(x) = 1,
D(x) = dlz). .

“Thus the ged of two polynomials depends oaly on the “smullest”
field containing all of their coefficients. Jayparticular the property
that a pair of pelynomisals is relatively prﬁne cannot be destroved by

NN

enlargement of the coefficient field. )
Einzc&éEs

1. List in the form (12) all the Jnonic divisors of each of the polynomials

flx) = (22 4+ D{® + 2)and g(:c} (z? + 1)%af — 4), first within ®[z], then

within @[z]. Finally, list 1;{1311' meonie, common divisors in each ease and
thus determine ged [f(x); 9x)] in two wayE.

2. Prove thut the palymomials 22 + 2 and @ + ¢ of Clz] are relatively

prime (& = v'—1), by showing that 22 + 2 and 2? + 1 are relatively prime
polynomials of G{[st

68 Generahzatmns Until now we have discussed the ged of only
two pol%omla]s I fi(@), .. ., fi(x) belong to $[x], their ged is de-
finedwas' a monie polynomial d(z) dividing all of the fi(z} and such
timh every common divisor of the fi(x) divides d(z). That this ged

\emsts provided at least one fi(x) is not the zero polynomial, may be
established by a proof which is completely parallel to the proof given
for Theorem 6-2. The same proof will show that

ged (i), - .., fr@)] = m(@f@) + - -+ + anl2)fula)

for suitable polynomials a,(z) in 5[z].
Theorem 6—4 and its proof may also be readily extended to more
than two polynomials. :
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Exnreises

*1. Let fifz), ..., fi{2) iein%[z]. Using formulas like (12) for the totality
of monie, conumnn divigors in F[z] of each of the fi{z), give a methed for con-
structing the gedl of the filz). :

*2. Prove the extension of Theorem 6-2 to the case of » polynomials f,(z).

*3. Frove the extension of Theorem 64 to the case of » polynomials fi(z).

4, Find the ged ane the lem of the following set of fonr polynomials of
#[z]:
i (! — )% + 4z + 4), (22 — 1{at = 1),

(24 D 4 2), (2 4 34 (e — 12 .
¢\
6-9 Roots of polynomials. If a nonconstant polynomial f(z) Qver
& field § factors into linear factors, &N
(16) f@)=clz—r) --(&—ra), R4
we say that ri, ..., r, are the roofs of f(x). The ¥éalVpolynomial
fz} = (52° + 10)2 does not have such a factorizationioter @, but does
over the Jarger icld €. There we have W
(17) J) = 250z + iV2p(x — V2P,

and the roots of /() are iv/2, iV/2, —iv/3; and —iv'2,

Suppose that fla) is a Il('JIlCOIlSta-lllt"]jé]}’ﬂomial over an arbitrary
field F, such that f(2) docs not f actoMinto linear factors over &, Tt is
known that, as in the illustratioabove, thereis a field X containing &
such that f{z) does have a fadtorization (16) with quantities r; in X.
Sec References 3, 4, and 17’.\\I‘he gist of the theory in these refercnecs
1s that roots of a polynemiil are a well-cstablished concept, and may
be regarded ns uniqual§”determined by the given polynomial. The
reader will nod go,,a.:s\t-*rhy if he regards the gencral situation as similar
to that in the ;‘;3'\iq,mf)le above with @ and € as the ficlds.

Ifin (16) piacisely & of the r; are equal to ry we say that rqis a root
of multiplicity'k.  In (17) there are four roots, but only two distinet
rUOtS,\ffé‘(s;lr having multiplicity two.

Exrrcises

1-_ Use the usual rules of caleulus for the derivatives of products and poly-
nomials to ealculate the derivative f'(x) of flz) = (& — ¥ (z}. Then prove
t'h_aJ? if 7 Is & root of multiplicity & of f(z), with & > 1, it is a root of maulti-
plicity & — 1 o1 £(z). ; |

2. Continue Fxercise 1 o show that r is a root of f(z) buving multiplicity
> 1ifand only if # is a common root of f{z) and f'(z}. ' :



CHAPTER 7
MATRICES WITH POLYNOMIAL ELEMENTS

7-1 Introduction. Many of the fundamental and practical results
in the theory of matrices oceur in the study of ‘‘similar malrices,”
treated in Chapter 8, and in related subjects. Though the mat-ri{:ss
in question may have real number elements, the proofs ofMhe
theorems, and sometimes the theorems too, involve cerisimyother
matrices whose elements are polynomials. It is largelfyfoi these
reasons that we have studied polynomials in the la,si;}‘chapter and
will study matrices with polynomial elements in tbis?chalpter.

The main theme of this chapter appeared fipstin the theory of
equivalence given in Chapter 3. A somewhst pirallel development
is given here for rectangular matrices witl’.}.QonnomiaI elements.

7-2 The status of past results. Let 5:& a field and 5{x| the poly-
nomizal domain consisting of all polynomials in z with coefficients in 5.
We shall study rectangular matrigéyover F(z], that is, with elements
in §[z). o8

Such concepts as nonsinguldrity, inverse, and rank were developed
under the assumption that\the scalars form s field. In the present
situation the scalars g.;e,\polynomia]s, and collectively constitute a
polynomial domain$Fz], not a field. Fortunately, this does not
lead to the abandenment of the concepts and results already de-
veloped, for, ag@ve shall se¢, F{z] is a part of a certain field 5.

Consider' | #xpressions obtained from z and the eonstants (ele-
ments of F) by use of addition, subtraction, multiplication, and
d@'visz'q:?.\ This set of expressions is denoted by F{x) and each of its
memb@rs is called a rational expression in z with coefficients in .
Agindicated in Chapter 1, ¥(z) is a field, and by its definition F(z)

Scontains F[z]. Also, the familiar process of combining terms shows

that every rational expression may be written as s single term

Pz)

A=)’
whose numerator P(z} and denominator Q(z) belong to Fx]. In
fact 5(x) may be defined as the totality of quotients of polynomials
in x, denominators being nonzero polynomials. :

122
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Thus each matrix 4 over F[x] is zlso a matrix with elements in the
field K = F(z}, so that the past developments still apply. To illus-
trate: The row space of A consists of all linear combinations of the
rows of A with coceflicients in the fGeld ®. This space is a vector
space over K and its dimension is the rank of 4. The matrix 4 is
nonsingular if and only if it is » X n and has rank n. The determi-
nant criterion for rank is, however, especially neat for matrices A
over §[x], since it involves only multiplication, addition, and sub-
traction, applied to the elements of 4, hence may be computed en-¢

tirely within F[x]. N
¢\

EXERCISES N

1. Find the inverses of the matrices &N

r x4l x :c+1]. (O
t+2 431" |z—-1 2

2. By studying row spaces, show that the matriceg O

v

¢ z+1 0 W\ E
o - 1 1 i 'a.’. 1
ror e -z a1 at—1

are singular. Show the same faect by pjl;,m;i“ng that each matrix has zero
determinant. N

™
3

7-8 Equivalence over 3[z]¢{ Elementary operations on a matrix
over 5lz| are defined as foll§ywWs:

I. Interchange of t\x§\r0ws (or two columns).

II. Multiplicatiomyof a row (or column) by a nonzero constant.
III. Addition td Hhe ith row of the produet of the jth row by f(z),
where j = 7 af }(x) is any polynomial over ¥; and the analogous
Uperation‘@i “columns.

These are Drecisely the operations of Chapter 2, but the word scalar
now méahs o pelynomial, and the scalars that have inverses are t-l}e
nonuerh constants. As hefore, an elementary matrix B 1s a matrix
obtained from 7 by performing a single elementary operation © on [,
&_l(lid O may be performed on 4 by multiplying by  on the appropriate
81dg,

Let 4 and B be matrices over ¥[z]. If B is obtained from 4 by
Performing any suceession of elementary operations, B is said to be
Suivalent to A over $[z]. As in the case of equivalence over &, B is
®quivalent to 4 over §{z] if and only if B = PAQ, where P and Q are
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products of elementary matrices (in the sense defined above). When
clearly understood, the phrase “over F[x]” is omitted,

It is evident from the definition that each elementary operation o
on A may be “removed” by performing another elemenlary opera-
tion. When these two operations are performed on 7 we find

Lemva 7-1.  Each elemeniary matriz over F[x] has an inverse which
s an elementary matric over ¥z,

As usual, each matrix is equivalent to itself; B equivalent sa A
implies A equivalent to B; and if B and A are equivalent o a corhinon
matrix, they are equivalent to one another. Thus, equiva‘léng\,e over
F[x] is another RET relation. \

Since members of F[z] also belong to the field & = J‘(ta) if mairices
B and A are equivalent over ¥[z] they arc also ec&uvalent over X in
the sense of equivalence defined in Chapter 3. e'lalier equivalence
does not alter rank. This gives

Lrvma 72, If A and B are eguznalen@v}r S[x], they have the same
- randk.

Q"

FXFRCISES

1. Bhow that the matrices in Ex’mm‘:e 2, Section 7-2, are equivalent,

respeciively, to Y
L U 100
o |’ ¢ 1 0f
X {000 3 0 0 0

Then verily Lemma 7\}]11 these two cases.
. 2. Tor 3 X 3 matrces write the elementary matrix which adds to the third

row the produc;t\of “the first row by # 4+ 1. Then find the inverse of this
matrix, -

3. %ow‘*{hut the matrices in Exercise 1, Section 7-2, are equivalent, re-
spectively to

) [1 0 1 0
O 0 1) [0 #—z+1]
vV 7-4 The canonical set. The division algorithm (Theorem 6-1) is

the main tool to be used in reducing all n X s matrices over §[z] to a
simple, canonical sot under equivalence.

Leyma 7-3. Each nonzero matriz A over F[x] is equivalent (over
Flel} to @ matriz of the form

By = [ﬂg’) ?11],
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where f{x) is monic and has minimal degree among all nonzero
elements of all matrices equivalent fo A. '

The elass of ull clements of all matrices equivalent over #[z] to 4
eontains a polynomial f(x) of minimal degree. Bince operations of
type IT are available, it may be assumed that f(x) is monic. Let B
denote a muirix equivalent to A and having f{(z) as one of ifs clements.
Then f(z)} nay he brought into the first row by an interchange of
rows, and then into the first ecolumn by a column interchange.
Hereafter we use only operations of type III beginning with the
matrix €' now al hand: O\

NS *

o [f(,‘t'.) C‘]] C] = (C]_z, ey C]s), \ N\
v Cg (‘0 ! Cz = CO]. (@1, ey cnl). . (":c'
Supposc that ¢ = A(x) = 0,7 > 1. By the di_vision’a.lgo"rithm

M) = g@I@ + @), N

where r(z) = 0, or 7{x) has degree less than 't‘f'kélﬁt»\of Ffa}, From the
ith row of ' we subtract the product of thaJirst row by g(a), thereby
replacing ¢; by #(x), The minimal prgpérty by which f{x) was de-
fined implics that r(z) = 0, so that &i“has been replaced by 0. A
repetition of this process makes th€' first column zero except for its
top element f(x). A similar treatment of the elements in the first
row mukes all of them zerom(,\'\\fcept the f{(x), and this work does not
alter the zeros a.lrca.dy.u‘étzfined in the first column. Hence the
lem_ma_ \

Tagorem 7 -1. .~E‘a’ci’z matriz of rank r with elements in F[x] s
equivalent oven30E] to @ matriz B such that (a) B is diagonal; () the
first r diagaial clements of B are mondc polynomials L), ., @)
(¢} the f&n:f}t-zm'ng diagonal elements, if any, are z€ro; (d} fi(z) divides
fimlepd=1,2,...,r- L.

To brove this theorem, let the given matrix A
etma 7-3, which gives an cquivalent matrix Bi.
A1 sppearing in B, is nonzero it may be subjected to Lemma ?—3
by performing on B, clementary operations not involving the first

TOW or column. This gives a matrix .

By = 0 fﬂ(x) (LD
L 0 A,

be subjected fo
If the submatrix
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where fz(r) has minimal degree among all nonzero elements of all
matrices equivelent to 4, If 4, is not zero, the process may be
repeated. A finite number of repetitions of this process produces s
matrix B with properties (a), (b), and (¢} for some integer r = 0,
Since r is evidently the rank of B, it must {Lemma 7-2) be the rank
of A. To prove (d) use the division algorithm to get

(1) ' fira(®) = q(@)fi(x) + rilz).
Then recall that at the 7th stage in the construction of B we hitve a
mafrix \

. B; = diag [fi(z), . . ., filz}, 44, X '.\"'\

'\
where f;(x) has minimal degree among all elements ¢f‘all matrices
equivalent to 4,5, One matrix equivalent to A,-_l.ié”ﬂ

Jil=) 0 0 mj\i
Ci=f 0 fia(x) 0 4
0 0 Awi
To the second row of €; we add ¢:(z) tifaés the first row, then from
the second column of this matrix subteaet the first column, obtaining

filz) =Sl 0
(@@ ri(x) 0
QN 0 Ay
If 7:(z) were not zero, i{vrould have lower degree than fi{z) by the
division algorithm. _Sifce this is forbidden by the minimal property
of fi{x), ri{z) mustibe zero. Then (1), with ri{z) = 0, shows the
truth of (d).
In the nexbSeétion it will be shown that the matrix B of Theorem
7-1is umqnefy determined by 4.
R \‘\\ 3 ExzrcsEs
Eo‘r each of the following matrices find the corresponding matrix B of
.«Thenrem 7-1.
\ ’ 1. The first matrix in Exercise 2, Scetion 7-2,
2. The second matrix in Exercise 2, Section 7-2,

3. The matrix
r &2 .
ozt

7-6 Invariant factors. Certain features of the subdeterminants of
8 matrix A over ¥[x] are not altered by elementary operations. These
will be investigated now,
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Lemma 7-4. If P is a product of elementary matrices over 5[z, the
¢ X | subdeter minants of PA are linear combinations, with coefficients
in Fx], of the £ X t subdeterminants of A.

It suffices to make the proof for the case in which P is an elementary
matrix E, since linear combinations of linear combinations are again
linear combinations. Let M be a ¢t X ¢ submatrix of PA and let S
be the submatirix of A lying in the same position as M. Then § Hes
in certain rows of A, which will be said to pass through S. 1f E does
not affect these rows, M = 8, If E interchanges two of these oW
iM| = — ||, and if it interchanges one of these rows with a rofx Het
passing through S, M is another submatrix of A, perhaps with one
row out, of order, so | M| is plus or minus some subdeterpiinant of A.
If E multiplies a row passing through S by ¢, |[M| = €8} Suppose
now that Z adds to the ith row f(z) times the jth. Jf{row ¢ does not
pass through &, 37| = |S|, and this conclusion alseholds when both
10w 7 and 7 pass through S by Theorem 4-7. (There remains the case
in which row ¢ passes through S, but rowf ddes not. Then

] = (8] + 7y,
where T'is o, submatrix of 4 or becomes one by moving one row to the
appropriate position. This completes the proof.

Levvs 75, Let P and Qeproducts of elementary matrices. Then
the ged of all X ¢ subd«{érmmants of PAQis alsotheged of all £ X &
subdeterminants of .-4\.\

Let d(x) be the g(d of all £ ¢ subdeterminants of 4, and di(z)
that of B = PA,\::Then d(z) divides d\(z) by Lemma 7-4. Since
also 4 = P-tB~dhere P is a product of elementary matrices, di(z)
divides d(zhN"Both being monie, di{z) = d(x). It remains to con-
sider B =PY and € = BQ. But ¢V = @'B’, where @' is a product of
elementury matrices, so that the part already proved shows that the
gefl of the ¢ X ¢ subdeterminants of €7 is that of B’. The sub-
determinants of ¢’ are those of C (Theorem 4-3), and likewise for B
and B, This completes the proof. '

LeMas 7-6.  Let A be o nonzero matriz over ¥[x] and B an equivalent
matriz with the properties of Theorem T-1. Then the ged of all
X t subdeterminants of A is

g = [ila) -+ - fi(®),

fori=1 9 cea, T
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By Lemma 7-5 it suffices to show that g, is the ged of all { X ¢ sub-
determinants of B.  All £ X ¢ subdeterminants of B are 0 except those
with diagonals lying on the diagonal of B and with ¢ £ r. One such
subdeterminant is g;. The others are products

(2) Fu(@) - - fule)

with cach k; = 4, so that fi(z) divides fr, (), and ¢, divides the product
{(2). Thus g, is the desired ged. ~

We are now in position to prove the uniqueness of the matetx B
in Theorem 7-I. Suppose that A is equivalent not only tr.)\B but
also to € with the properties of Theorem 7-1, Let ’rh(, T NONnZero
polynomialg on the diagonal of ¢ be A(x), ..., \T(x). Then by
Lemma, 7-6 the ged of all ¢ X £ subdeterminants of A'is

= Fi@) - 1) = ha(®) - WD)

In particular ¢, = fi(x) = k() and \\
®) =) s )
Thus N

_ S 3

TreoREM 7-2. The -maim’arli @h Theorem T-1 is uniquely determined
by the given matriz A. Tae' polynomials f.(x) on the diagonel of B
are giver by (3) whe?‘e\gg | and g; isthe ged of all b X k subdeter-
minants of A, I = .lg R

We thus have a\anonl(,a,l set of matrices called Smith’s canonical
mairices for the relation of equivalence over $[z]. The integer » in
Theorem 71 }b characterized as the rank of 4, and now the poly-
nomials fq(:r) .., F-{x) are also eharacterized clea,llv as quotients of
certain’ged’s of subdeterminants of A.

rJ.he wpariant factors of a matrix 4 over §[z] are defined to be the

n ptﬁynomlaln hiz), . . ., f.(x) appearing on the diagonal of the Smith
\ “$inonical matrix equivalent to A,

TuEOREM 7-3. Two n X.s malrices over §lx] are equivalent over
Flx] if and only if they have the same tnvariant factors.

If Ayand 4, have the same set of invariant factors, they are equiv-
alent to the same Smith canonical matrix B, hence equivalent to
each other. Conversely, if A, and A; are equivalent, and are equiva-
lent to canonical matrices By and By, respectively, the transitivity of
equivalence implies that B, is equivalent to 4;. Thus two canonical
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matrices, B, and ., are equivalent to 4;, By the uniqueness
By = B,, and (his gives the conelusion.

CoroLLany 7-3. Let X be a field containing &, and lel A, and A,
be matrices over Fxl.  ff Ay and A. are equivalent over K[z], they
are cquivalent orer Fal.

Since the clements of Ay and A, lic in 2], the ged’s of the ¢ x !
subdeterminants of A, and A, also lie in #[x], and {Theorem 6-1)
these ged’s do not change when 4, and A, are regarded as matrices {
over the larger domain, K[z]. The invariant factors, then, do pet
change, since they ave ratios of these ged’s.  Thus the equivalenge’
4y and 4; vver ¥[x] implies by Theorem 7-3 their equivalénce
over Flx]. RS

EXERCISES \‘

L Find the ged of all 2 X 2 subdeterminants of thi\setond matrix in.
Exercise 2, Section 7-2, and of the equivalent matrixinExercise 1, Section
73, Do the sume for 1 X 1 subdeterminants. W

2. Write the invariant factors of the matrix in\thie preceding exercise.

3. Without performing elementary oper%trio'ns; prove the equivalence of

the matrices \
2t 28" 0 .
£ ) N2t -t

Then obtain the sume result by elexentary operations. .
4. Find the invariant factors 8f the following matrix without ealeulating
ged’s of subdeterminants:

...:‘.' x x]_
e ?+z @

5. TIf two mm.f?tés over Flz] are equivalent over X = F(z), are they neces- .
sarily equivalentvGver 5(z]? : ' 7

6. Prove B converse part of Theorem 7-3 by the use of I{emma r—5.'

7. If ANIS & square matrix over F[z] prove that A is equivalent to its
t-ra,nqiﬁge?

"8 Elementary matrices and inverses. If a square matr'-ix M
over ‘3[3?] 'iS ]‘egardcd e mer[;ly a specia,l matrix \\"ituh e]ement-s 11 the
f‘leld K = F(x), neeessary and sufficient conditions for M to have an
verse are already known: [M| # 0 is one eriterion,  Others follow:
M shall be 5 % 5 of rank n; the null space of M shall be the zero
*Pace; Af shall have a right inverse or a left inverse. _

A stronger (uestion arises. ‘Which matrices M over 5[z} have, in-
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verses with elements in 5[z]? We have already seen that this is a
property of elementary matrices over F{x], hence also of products of
such matrices. We shall see {Theorem 7-5) that these are the only
matrices with the property in guestion.

TueoreEM 7T-4. A malriz M over F(z] is a product of elemeniary

matrices if and only of M is square and |M| is a nonzero constant.

“If an elementary matrix £ effeets a row operation of types I, I, or
II1, its determinant is —1, a constant ¢ # 0, or -+1, respectively.
Hence & product M of such matrices has a nonzero constant‘,;s its
determinant. Converscly, let [M] be a constant k& = 0. B)T\Llleorﬂm
7-1 there are products P and @ of elementary ma’mges Jguch that
B = PM@ is &« Smith canonical matrix,

B =diag {fite), ..., +(®),0,. "{j‘},g
with invariant factors fl(:t?), cey fr(x) Thexk
€)) 1Bl = 1P| - M| Q] = k\kf’
By the opening remarks in th1s pruo? the qua,ntlties [P| =p and
|Q} = g are nonzero constants, so that\(4) gives |B| = kpg = 0. This

proves that the rank r is cqual o 1, where B is n X n, since otherwise
r<nand [B|=0. Since %

[B'l"'ffl(w) -+« fulz) = kpg,
each invariant fact ié(x) is a constant, and being monie, fi(x) = 1,
t=1,...,n Thus
NOTB=T=PMG, M=rig,
where P—lQ\';l\ls a product of elementary matrices.
TuuGriy 7-5. A matriz M over 5[x) has an inverse with elements

?QLS?[m] if and only if M is @ product of elementary matrices, hence if
..\;aﬁd only if M is square and |M| is a nonzero constant.

When M is a product of elementary matrices, it has already been
observed that M exists and has elements in ¥[z]. Conversely, i

M1 exists and has elements in ¥z}, its determinant also is a poly-
nomial in x, and

MM~ =1, |M| M| =I] =

Thus (M| and {M—| are polynomials whose product is 1, and they
must be nonzero constants, By Theorem 7-4, M is a product of
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elementary matrices. The final “if and only if”" in Theorem 7-5 is
merely a restatement of Theorem 74,

ExERcisEs

1. Show that matrices B and A over F[z] are equivalent if and only if there
are matrices f2 and ¢ over F[z] which bave inverses over ¥[x] sueh that
B="PrAQ.

2. Let M Le o scpare matrix over Flz].  Show that M may be reduced to I
by elementary row operations over F[x] if and ouly if |M] is & nonzero con- g
gtant.

3. Prove that the following matrices over ®[x] are produets of clemel}ta}g

matrices by finiling their inverses: O
\Y

_ r z+1 _[r = |,
A_[:x+2 x+3:|' B_I::c :c”-!—l] AD
A

Also express B as a product of two elementary matrices,

AN

7-7 Matric polynomials. The elements a.r;‘.ﬂ'&ﬂ n X s matrix 4
over F{x] are polynomials O

i = €% 4 CemaTT 0N ¥+ e, (c; # 0)

where ¢ and each ¢ depend on 7 and! ;,-. * 1t m denotes the maximum
of the degrees ¢ of the elements a‘-,-fdfr A, the matrix 4 (assumed to be
nonzero) can he written as a polynomial

. ~N
(a) A=<‘o{£&fﬁ+...+‘4ﬂ+Ao,
whose coeficients A, g7 n X s matrices over & with Am # 0. Then
4 is called a matrip golynomial of degree m.
For example, /0

.&L\‘_" o+ 6z~ 7 x‘+2$2]
AN L 2243 #»—-2r+1

Ay 0 1 10 0 2] .
=[0 0]’“”’[0 1]”““[1 0l®

5 0 =7 0]_
+ [O _ 2:| z+ |: 3 1
This matrie polynomial has degree 4. In general, each ma’trif 4
over §z] is expressible uniquely as & matric polynomial (5). The

coefficient matrix A; of o* can be described as obfainable from

A = (a.) by replacing each polynomial a; by the coefficient of 2*

appearing in q;;. The matrix A, is called the leading coefficient of 4,
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and if 4,, is nonsingular 4 is called a preper matric polynomial. If
4 is not square it does not have the oppertunity to be proper.

To indicate that A is a matrie polynomial it is convenient to use
the functional notation A = A(x). Since the variable r in any
matrix over $[z] behaves like the constants in computations, it may
be written in (5) on either side of the coefficient matrices. Thus,

[12_,_,_212]_ 127
3 4| T %3 4T %3 4" ~

Moreover, in each of the three products above, # may be replaccd by
any constant ¢ without destroying the equalities. In a generslapatric
polynomial 4 = A(z), the matrix A{c) obtained by writ-in’g\c in place
of 2 is well defined. The same matrix 4 (¢) is obtained*ifithe rcplace-
ment x = ¢is made when 4 is written as in (5), or in,t-Eie modified form
having some or all of the factors z on the left, or zf“ﬁ‘ is simply written
as a single # X s matrix with polynomial elemeuts.

When z is replaced by a matrix C the de’fﬁi‘tion of A(€) s not so
clear. From this point on, let us restyiﬁt’éttention to the case in
which 4 is square. Consider the simple matric polynomial

o FhVD 10
4= 4@ = 4w = O]x—-x[o 0]'

~

~§" 1 2
."'\ . —
O € [3 4]

for x gives A\

N\

1 2 10
2aic-[g 5] ea=[5 o)
Ke 0 0 3 0

Sinece Aﬁ"&é'CAl it is clear that the side on which # appears at the
momentof the substitution = € is of importance, and that A(C) is
not.wel! defined without some agreement on this matter.

..\:Eor a general # X n matric polynomial (5), and an n X n constant

Npaatrix €, we define the right functional value 4,(C) and the left
functional value 4,(C} as follows:

AC) = Al 4 o+ + AL+ Ay,
] A:(C) = CmAm-‘r e + CA’11+A0.
If A(z) and B(z) are two matric polynomials, S(z) = A(z) + B()
is perfectly twell defined, and clearly

8AC) = A () + BAC), SC) = ALC) + Bi(C).

Bubstituting
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The product P (2} = A{z)B{z) is also well defined, but the funeticnal
values P.(¢7) and Pi(C) bear practically no relation to those of
A{z) and B(x). To illustrate, let

Ale) = A+ Ao, Blz) = Bz + By,
40 that

P('L) = A B+ (AOBI + AlBu)x + 4B,
Then

N

PAC) = AuBiC? + (AoBy + A1B))C + 4By,
AN
whereas AN

() = 4,0+ Ay BAC)=BL+By, A\
A )B,..m) ACBC 4+ ACBy+ AR + AnB'u R

Since the matrix (', unlike the variable ¥, may not. ke r\arned to the
right of B, snd B, (e‘(cept in very special cases), ius clear that the
praduct of right funectional values may not equal&he right funetional
value of the product. m
Torepeat, there is no trouble when a scalale {or & scalar matrix ef)
is substituted for :: P(c) = A(c)B(c) regardless of whether right or
left funetionnal xalueg are used. The difficulties associated with
substitution of a matrix for =z, 'vspecmlly when multiplication of
matrie polynomials is involvedeshave been set forth both as & caution
and as a buckground qganirs{’\“ hich ihe results of the next section
may appear in their prow Hignificance,
7N EXERCISES

L Tor the matﬁ'{ -
N\

1 z+1
,s’§ 4= .A(.’I,T) = [«"'.;2 1 +I+3?2],

wmpute\#i{c), A,(6), and 4,(c), where ¢ is an arbitrary scalar.
2\3‘91' the matrie polynomial A(z) in Exercise 1 compute 4:(C) and 4,(C),
wh

e[ 3]

3. If A(z) is the matric polynomial in Exercise 1 and

=[5 1) o-[b 3]

tompute A.(C)BC) and F,(C), where P{z) = A(=)B().
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4, Let ple) = a{x)b(z), where a{z} and b{x) are polynomials over .
Prove that p(C) = a{C)b(C), where C i3 any square matrix over ¥,

*5. If A and B are » X » proper matric polynomials of degrees » and «,
respeetively, and D is any # X n matrie polynomial # 0, show that the
matric polynomial A DB has degree at least r + s.

7-8 Division algorithm for matric polynomials. The division al-
gorithm of Theorem 6-1 concerns polynomials with cocflicients in a
field. An analogue will now be found for square matric polynomigls.

Tororem 7-6. Let A and B be n X n matrices over §|;1."J ine et
B be proper of degree s.  Then there exist unique m-at-rz‘-qe,s\'@;:.\h’-, Q1
and Ry over F{z], such that W M

-

(6) A=QB+R, A=BQ+R, 8
where either B = 0 or the degree of B is less thanms\ (md either Ity =0
or the degree of Ry is less than s.

The proof iz entirely analegous to t-ha.,b’.&"Theorem f-1, careful
attention now being given to the noncommhtativity of the coeflicients.
In the case of Theorem 6-1 the inversé 0f the leading cocfficient. of the
divisor was used repeatedly. If A \N
(7) B = Ba' 3% + Bz + B,
the hypothesis here that B 18 ~[;)‘I'Oper implies that B; has an inverse,
If A=0o0rif A has deg@e m < 8, equations (6) are fulfilled by the
matrices R = B, = 4 Q 1 =0. Hence we let 4 be nonzero,

{ 'A A.mxm-i_"‘—i‘A]x‘,f'Au (-':'lm# 0)
and let m 2 £, Then

(8) R0o3 A~ A.B7'Bxv— = ()

is zero Q\has degree my < m. If () is zero or of degree less than s,

the hrat equation in (6) is satisfied by
O R=0), Q=A.B 2

\If the degree of 'y is m; > s, a finite repetition of the process gives
the resull exactly s in the case of Theorem 6-1. To gel the sceond
part of {8) alter (8) as {ollows:

A — BB\ g = D,

so that D, is zero or of lower degree than A. If D, is zero or of degree
my < 5, we take

Ri=Dy, Q =B Azm
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Otherwise we continue as above. To prove the uniqueness, let
A=QB+RK=0QB4+ER,

where B and 2, individually are zero or of degree less than s. Then
(9) (@ - QB =Ry — R,

where By — R =0 or B — R has degree less than s. If @ — @y is
not zero, il is 1 matrie polynomial of some degree ¢ with a leading
coefficient €, = 0, and B is & polynomial (7) with nonsinguiar leading,
coefficient. 5. The left side of (9), when written as a matric polys
nomial, has leading coefficient @B, # 0. Then the left side of (@)
has degree ¢ -+ & = s, in confliet with the situation on the rig{z& side.
This proves that \ o

P
< 3

@—Q=0, B—R=0, D
and gives the uniqueness. A like proof holds for g} and Ry.

The first formula in (6) is described as division ¢f'\d on the right by B;
Q is the right quotient and R is the right rﬁb@iﬂfier. The parallel
“left” conecepts are associnted with the s¢eond formula (8).

THEOREM 7-7. If A isthen X n ma{ﬁf:‘polymmial
A=4 (:B) = A,,,x"f'.—j{:, .- + A+ Aq )

end B is the n X n monie, Zz'gw‘c;é ‘matric polynomial B = Ix — C, the
right and left remainders OQ‘divisz'on of 4 by B are

(10) R= Am({{‘#-.- 4 AL+ A= AL0),
(1D Ry = CrAN+ -+ 4 CAr + Ao = 4(0).

The factorizatiofls
(12) @ — ¥l 4220 4 -+ + 20+ C)El - O)
can he vg@’ﬁﬁxﬂ. immediately by multiplying out the product on the
Tight. HiBoth sides of (12) are multiplied on the left by /A and the
Tess‘,l,utiﬁg’ equations summed for i =1, 2, . -5 7, there refsults on
the\r‘rght a product @ + (zI — €), where @ isa matric polynomial. On
the left there results

2 At — i A0 = (Ag+ zAix‘) - (A.u + ZIA‘Ci)
i=1 i=1 i=1 =
= A - .4r(0).
Thus
A=Q. (aI-C)+AL0),
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80 that B = A,(C) by the uniqueness of K in Theorem 7-6. A
similar proof, reversing the two factors on the right of (12), gives

(11).

7-9 Consequences of the division algorithm. With cuch nXn
matrix ¢ over ¥ there is associated the matric polynomial

o -,

which is called the characteristic matriz of €. Its determinanirds a
polynomial over &,

O\
(13) lef — C| = flz) = 2%+ camz® L + - - - + 0y, O N
called the characteristic polynomial or function of ,.afid (1} =1{ is
called the characteristic equation of C.

| &9
TrrorEM 7-8.  Let ¢! be an n X n matriz ogeind ficld 5 and let (13)
be its characterisfic function, Then ) \\“

HO) = O+ 60.aC g SNHear=o

This result, called the Cayley- H%rmllt(m theorem, iz frequently
summarized by the statement: E\«ery {square) matrix satisfles its
characteristic equation. \Totf“ s in Section 3-13, that when 2! is
replaced by C¢in (13), the tonstant term ¢ is replaced by e,/ (which
may be regarded as replethg ex® by 0% = c,l).

To prove the th(;osizﬁ} consider the adjoint matrix of «f —

:‘.\ adj (= — C) =@
This is a ma,trk ‘over 5[z]. By Theorem 4—6
o) Q (I = C) = o] €| - T = f@)L,
(1_4).~\\ Q- —C) =TIz + coadet+ o+ + ol
’l"hé.:fight side of (14) is a matric polynomial A of degree n. Jf

"B~— zf — €, (14) may be written as A = Q- B+ 0. The unique-
fiess of R in Theorer 7—6 then gives R = 0, but Theorem 7--7 gives

B=CrdenaCrid o el = 0.

An immediate corollary of TheoreIﬁ 7-8 ig this: The minimum
polynomial (sce Bection 3-15) of an » X # matrix over a ficld & has
degree £ n.

The next result, another application of Theorem 7-6, will be an
important tool in Chapter 8.



7-9] CONSEQUENCES OF THE DIVISION ALGORITHM 137
TuporEM 7 9. Lef
ﬂ]fl = .’1.]_.’1:"‘{‘81, ﬂf2 = A2$+Bg

be n X n walric polynomials of degree one over Fx] and let M, be
proper.  Thon A 1g equivalent to My over Flz] if and only of there
are nonstignlar matrices Sy and Ty over § such that

(15) My = ST,

If (15} holds with the stated properties of 8 and 77, these matrices
are products of clementary matrices over F, and the latter are alxv;m%rs\
clementary matrices over F[x]. Thus M, is equivalent to M. Qaen=
versely, let J/. be equivalent to M, over F[z], so that by

(16) M, = SM.T, D
{17) SM, = MyT—Y, MiT = 87My, o\

where 8, 7', 8 ', and T are products of elemen@ry matrices over
#zl. There are matric polynomials @ and Qg{i@h that

(18) S = JI;Q.{ + So, T = Qp]ff_;+ TO

by Theorem 7-6 with A = § and T in g, and B = M. Since M,
has degree one, 8§ and 7y have eleméﬁ{-s in . In the computation
ahead we shail make repeated uselof (17) and (18) in the effort to
obtain (20), the right side of which has M. as a factor both on the
left and the right: O

My = SMUT = (Mglls '+ S MLT
= ST 4 FQ51M
Sodl 1%&;’1} 2 To) + MoQuSM,
S Do + (S — MoQu)M QM2+ M:QuS™'Mo
= ST, + (SMQM. + Ma(—QuMh + QoS )M,
(19 M, *:';Snf]'flTu + MAT-Q, — QMG+ 08D,
@) 5" M, — SyMTo = MaDMs,

The Yodtrix D, equal to the expression in parenthescs in (19), is &
matrie polynomial — recall that S~ and T are products of e}emer_l—
tary matrices over Fe]! If D # 0, the right side of (20) 1s a matric
Polynomial of degree at least two, since M is proper of degree one.

The left has degrec one, at most. Hence D =0, and M = Sod 1T

ED complete the proof we must show that Sy and 7o are nonsingular.
N

.
< 3

My = SM\ Ty = Sed Tox + SeBaTo = As -+ Ba.
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- By the unique expressibility of matric polynomials in the form {5),
(21) Az = S‘]AlTu.

Sinee 45 is nonsingular, Sy and Ty must be nonsingular.

ExErcrses

1. Prove that S; and T in (21) are nonsingular in each of the following
ways: {(a} by determinants; (h) by using 45! to show that 8, has & vight
inverse and T a left inverse; (¢) by a theorem on the rank of a prodish:

2. Prove that the matrix M, in Theorem 7-9 is proper. p \:\

8. Compute the characteristic polynomials of the matrices O

1 0 1 ("}g
[; 2]: [—1 0 0}! s :ﬂ
2 0 —1d N
and verify the Cayley-Hamilton theorem for these\rnatrices.

*4. Show that the churactoristic polynomial of @8Y » X n matrix € = (¢}
is monie, has (—1)"|C| as its constant term, :u}d};zi.'s —{eu + - -+ 4n) 88 the
coefheient of #-1, (AN

%5. Let f(z) be the minimum polynoshial of 8 matrix A over &, and let
g(x) be a polynomial over F. Provcziha"t g(4) is nonsingular if and only if
g(x} is relatively prime to f(z). 0N

6. Ifry, ..., rs are the roots afbhe characteristic polynomial f(x) of A and
A{(z) is a polyromial, prove\that [A(A)} = A(ry) --- Ah(r.). liint: Write
Rz) = c(sy — @) -+ (8 £B)) so that hA) = e(sd — AY -+ (5] — A)

*7. Let A be a square matrix over § whose characteristic polynomial has
roota 1y, ... ra. 1E9(x) is in Flz], prove that the roots of the characteristic
polynomial of gldPate g(r1), .. ., g(r). Hint: h(z) = y — gz} is a poly-
nomial over the field F(y), and A(4) = y7 — g{d). Apply Exercise & to
this polynomial'(x) and matrix A(4).

8. Showothat M; and M, in Theorem 7-8 are cquivalent if and only if
2l + AS'By and zl + A7'B, have the same invariant factors. (4, i
nongiagular by the result in Exercise 2.)

V

APPENDIX
7-10 Systems of linear differential equations., Consider a system
Py dys | dys _
e " dp Tz = O
d d
%‘?}1+£+y2=0,

of ordinary linear differential equations with constant coeflicients, 71
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and #. being unknown real functions of a real variable z. In terms

of the operator
d
D - tﬁ’
the system 1= written as
(D — i+ Dy = 0,
D~ D+ D+ D=0,

and In matrix notation:

w B2 O
D—-1 D+1])lyl] Lo O

Tt is casy fo see that an equivalent system (one having, t.]ig same
solutions) is obtained if we (i) interchange two equatiopg)(il) multi-
ply an equation by a nonzero constant, or (iii) add to}aﬁe equation
the result of operating on any other equation with any operator
D) =gy + i) + - -« + a,.d», the ¢, being any:m\a}’ numbers.

Steps such as these would commonly be gmployed in solving the
system. We sublract from the first equagioirthe result of operating
with D on the second, then interchangp»ﬁbe"two equations, next mul-
tiply the second cquation by —1. This'gives
(D — Dy +D+ Dy =0,

”a D2y2 = 0
Then by well-known methb.mdg of elementary differential equations,

1)

(23)

we obtain, \ \\
WD = ot
B Dy = —(D+ L
N =—0—Cr—0
Q" = —(¢c; + &2+ &),
) O Y1 = c1+ 20 + o + 6%
N {yz = ¢+ oL

’Kfir'é‘;[fr'()cedure used in reducing (21) to (23) should seem strangely
amilfar to the reader of Chapter 7. The operators (elements (')f the
2 X 2 matrix in (22)) are polynomials in D with congtant coeﬂ:iclfmts.
Sl‘“’h operators “ multiply”’ like ordinary polynom?als. That is, if we
Wish to operate on the second equation in (21) with f(D) = @+ al
T+ + a0, the result can be seen to be
FD) (D - D+ FD) - D+ e = 0.

Formany we have merely “multiplied” the equation by . f(_D)'
Multiplication and addition of these operators obey the associative,
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commutative, and distributive laws. In fact the operators f{1) form
a polynomial domain ®[] subject to the usual rules for manipulating
polynomials. Moreover, the processes (i}, (i), and (iii) on the matrix
of coeflicients in (22) are precisely the elementary row operiations on
matrices over ®R[D].

In general, consider a system

anyy + -+ @l = ki, ~
(24) ?’ﬂyl + -+ Qoslfs = k2,

Anafi1 + -0+ elfs = kn, (N

in which %, ..., ks are real functions of z with su\able propertics.
The a;; are poiynomla.ls in D with real conspants as coefficients;
that is, the a;; belong to ®[D]. Let ,:j\\“

A = (ayy), O
Y = col (1, . %),
= ¢ol (R{, - ks,

50 that the system becomes O™
AY = K.

Elementary row opcratloﬁ such as those illustrated above, may he
effceted by use of s&?ﬂatrl*{ P, which is a product of elementary

matrices over (R[Q],“ giving a new system
;’} / PAY = PK.

]ulementa,ry column operations may also be brought into play.
%uppose@ﬁt @ is a product of elementary matrices effecting certain
desu"@d eolumn cperations.  Then make a substifution
.\\ Y=0Z, Z=col(z,...,oz),

\hereby introducing new unknown functions z;. The system then
becomes .
: PAQZ =PK=col (h,...,h).

The entire theory of Chapter 7 is now available. We choose the
matrices I and @ so that the matrix PAQ of the new system is
diagonal, invariant factors of 4 appearing on the diagonal:

PAQ = diag [1(D), ..., £(D), 0, ..., 0]
The system of differential equations now has variables separated:
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fi(D)er = M,

F(D)z. = h,
Ozr41 = hr+1;

0z, = h. O
If the rank r of A is equal to =, all the equations are of thé férm
Jdey =l I r < 7, “everything” depends on Ay, . t,fln, the
system is consistent if and only if the known functions #ny, L
arc 7ero. o\

Assuming that the system is consistent, we solvothe fitst » cqua-
tions, each involving only one unknown functiongby known methods..
1 .(D) has degree m, in D, the solution for 285 contain & number
of arbitrary constants equal to m.. The fmCHOnS 241, . . ., 2» a1
arbitrary. We then find ¥ from the gqiation ¥ = QZ, a process
involving only linear combinations, tju:‘ith constunt coeficients, of the
functions z; and their derivatives.sy

In most eases the 7 X s matrix A is # X » and nonsingular, so that
4] is not the zero polynopdia} in D. We can then show that the
lotal number of arbitrary oi{nsiants appearing in the solution Junctions
Yy <oy Yo will be theddegree m of Al as a polymomial in D. First,
the diagonal matrix.\'PZA'Q ahove is now

MPAQ = ding [RD), . .., F(D)],

where \\
’\

4

o\ deg f.() = m: > 0. (i=1,...,n)
Then fh# degroc of [PAQ] is |
\ My + et + Hip,

and this is also the total number of arbitrary constants in zy, . . ., 2a.
However, |P| and |Q| are nonzero constants so that

|PAQ| = |P| - @] - 4]
has the same degrec in D as |A]:

m=m+ e+

oy
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This proves that the degree of |4| equals the total number of arbitrary

constants in the solution functions 2, . . ., 2,. But we must consider
.whether any constants are lost when we compute
Y =0z,

Q being a product of elementary matrices over ®R[D].
Consider the #th row @; of :
Qi={gn, ..., gin).
Then .
¥i=Gan -+ 0 Ginia. N\
Recall that if & s j, the arbitrary constants appearing,inné: are
entirely distinet from those in z; Hence the only way™s constant
appearing in, say, z; can he absent from y; is for the «constant to be
absent from g¢;;2;, where ¢:; is an operator belongmgfto UI[D]\, I{ this
happens, the constant can be “saved’ only hywhmmg it appear in
some other function

Yo =tar + -+ jafu%in'

This, in fact, is what happens. Foruf* \he contrary were Lrie, the
constant in question would be absent rom all of the functions

(25) Ty Ny Gni?ye
But the relevant differential equablons theory shows that the constant

appears in z; only as the coefficient of a function, g{z) 0, which
satisfies the equation \

(26) O 1D =o0.
Moreover, this famclion depends on a number 7 in such a way that

{26) implies that f?(r) 0. The constant in question can be absent
from all of ,Qn‘;a Munctions (25) only if

O” Quglx) =0, ..., qugla) =0

wher;ée\

A @) =0, .., quilr) =
it Tollows that D — r is a factor of all the polvnorm.als Qujy - -y Ini
constituting column j of . Then |@| has D — r as & factor, in con-
flict with the fact that |§| is a nonzero constant.

"Fhis cornpletes the proof that no constants are lost in computing the

“y solutions,” ¥ = QZ, from the “z solutions.” Tt also completes
the proof that if 7 = s and |A| = 0, the solutions of the system (24)
involve a number of arbitrary constants equal to the degree of 4]
as a polynomial in D,
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SIMILARITY

8-1 Introduction. If B and 4 are » X n matrices over F, B is
gaid to be similar to A over & if there is a nonsingular matrix P with
elements in F such that

B = PIAP.

O\
Then also A is similar to B: o\

Ny

4 = PBP' = (P~)BPL

Thus the relation of similarity is symmetric, and it siffices to say
merely thut B and A are similar. It is a simple matber to complete
the verification that similarity is an RST relatiom, ) .

Reasons for studying similarity appear in th “Bext two chapters in
many forms; in particular, significant ideas'in'geometry and dynamics
depend upon the notion of similarity. The-appendix to this chapter
bresents an instance of similarity a,rig'm;g; %n the study of a system of
differential cquations. All of thesesapplications are closely related
to the linear transformations studied in Chapter 10.

~\
. 2\ EXERCISES

A\ .
*1. Prove thut similariti is\¢n RST relation. .
2. Let B = P*AP. 8h6w that a matrix @ satisfies Q“AQ_ = B if and
only if @ = RP, whefe R is a nonsingular matrix commuting with 4.
(N

8-2 Simil t{; invariants. The theory of matric polynomials may
now he apphied to similarity.

Tredgkm 8-1. Lot A and B be n X n matrices over 5. Then A

iSsimilar aver § o B if and only if 21 — A and =l — B have the same

invariant factors, hence, if and only if = —A and ©f— B are

equivalent over Fz).

IfPtap = B, where P is a nonsingular matrix over F,
Pzl — A)P =zl — B,

802l —~ 4 and I — B are equivalent, hence have the same invariant
143
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factors (Theorem 7-3). Under the converse hypothesis, Theorem
7-9 applies, so that

S(I — A)T = zI — B,

where § and 7" have elements in ¥, Since the coefficient matrices of a
matric polynomial are unique, ST = Fand SAT = B. Then 8§ = T2
and B i1s similar to 4.

CoroLLARY 8-1. Let A and B be n X n mafrices over &, andfet X
be o field containing &. If A and B are similar over R, 0hey are

similar over &. )
'\

In short, two matrices are similar over any [ield contammff all of
their elemen‘m or they are not similar at all. The h\ pothem implies
that & — A and 27 — B are equivalent over ’IC[L].'\\B_} Corollary 7--3
they are equivalent over F[z], whence (Theoreny’ 8-1) A and B are

 similar over 5. —~

As we have seen in Bection 7-9, th do’rmmmant of the nXn
matrix x7 — A is & monie polynomialef d‘og,mo n. Since wf — 4 thus
has nonzero determinant, it has 1an1; w, henee hag n invariant factors
fil@), ..., fulz). Tet Pyand Py Be" products of elementary matrices
over F[z] such that Pief —H»ﬁl)Pg is a Smith canonical malrix
(Theorems 7-1, 7-2). Thehs™

.IJL(:I:I m.é\)Pg
ﬁ@k}ﬁm)

diag [/i(x), . - ., ful®)],
|P1(£,I - A.)P2i
|P1 |P2| i-IL'I - A‘
2N = pnf(z),

where p; = \P], =1, 2, and f(z) = |« — A|. Since f(z) and all
of the 'f{{xj are monic, p1ps = 1 and

RS 7@) = 1) - fulo).

\I"f words, the characteristic polynomial of a matrix A is the product
of the invariant, factors of 27 — A,

As Theorem 8-1 indieates, the discussion of similarity of matrices
will involve frequent referenee to the invariant factors of their char-
acteristic matrices. To simplify these references somewhat we now
introduce a new term.

f

Duristrion 1. The simdlarity invariants of an n X n matrix 4
are defined to be the invariant factors of zf — A,
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The similurity invariants which are constants are equal to unity
and are called frivial, Those which are not constants are called non~-
lrivtal.

ExXERCISES

1. Prove (1) by the deseription of the similarity invariants as ratios of
eertain greatest common divisors.

2. Bhow thab similar matrices have the same (a} characteristic polynomial,
{b} rank, an:i {¢) ceterminant. .

3. Bhow that every square matrix is similar to its iranspose.
x4, Let ¢(r) he nuy polynomial over ¥,  Show that ¢(P1AP) = P lg(4)R,

5. Uze the result of Exercise 4 to show that similar matrices have the g\é,ﬁle
minimum pelypomisl, « N

8. Use Tierem 81 to prove the similarity of the following mattiees, a, b,
and ¢ being arbitrary nonzero sealars: 4D

~ N
I:D a] |:0 O]_ G
0 bi |e b \

8-3 The minimum polynomial. In Chapten 2 it is pointed out
that every « X » matrix A over ¥ saﬁisﬁes: o pelynomial cquation.
The Cayley-1Tamilton theorem in Chaptér7 asserts that A satisfies
a particular polynomial equation of degree n. It follows that the
minimum polynomial m(z) has degtee at most .  That m{x) divides
the characteristic polynomial ofNd isa special case of the following
result, C \!

THEGREM 8-2. et o k\a square mairiz over F and let glx) be any

polynomial over FoyFhen g(A) =0 if and only if the minimum

Polynomial m(z) @hA divides g(<).

Tet g(4) = 0\ By the division algorithm for polyromials over 5,
9(z) = g{z)m@) + r(z). Since all the coeflicients here are sealars,
this formuld temains valid if A is substituted for @:

AN
AV 0=g(4) = g(d)ym(4) +r(d) = ().
X r(}) 1s not zero;, it is of lower degree than m{x), whence the property
"MA) = 0, just proved, is in conflict with the definition of m(z).
Hence r(z) = 0 and m(z) divides g(). Counversely,
g(z) = q(xym{x),
g(4) = g(d)ym(A) = ¢(4) - 0 =0

This completes the proof. _ )
That, similarity invariant of 4 which has highest degree is fa(z).
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We shall see that f,(4) = 0, and later that f.(z) = m{z). Let g:(x)
denote the ged of the X ¢ subdeferminants of zf — A4, s0 that
go(z) = f(x) = |xf — A, and (Theorem 7-2)

(2) F@) = goa@)fule).

Also, ge(x) iz the ged of all elements of

3) Qr) = ad] (zf — A}

by the very definition of these elements. Then £\

@ Q@) = gar@D(), O

where the ged of all elements of D() must be unity. Sakstifution

of (4) and (2) in Q(z) - @] — 4) = f@)] gives
gna(@)D (@Y (2] — A) = gar(2)fa(2)ID)

(5) D(@)(al = 4) = fula)]. N

Equation (5) is recognizable as an applicatioQ of ;she matrix division
algorithm of Theorem 7-6 with A = f.(z)FAnd B = =z — 4. Since
(5) displays a remainder I = 0, 'l‘heore’zn’i. =7 implies that
fa4) = 87

Then the minimum polynomial zaf#) divides f.(x) by Theorem 8-2.

TaHEORKM 8-3. The mi-nieﬁjt}}ni polynomial of a square mairiz A

18 that similardty invarigfibof A which has highest degree.

. PR

Since we have seen {&bg}\re that
(6) SN 7ula) = haym(a),
it remains to preve that k(x) = 1.

The divisigh algorithm may be applied to the matric polynomials
m(x) playivg the role of 4 in Theorem 7-6, and #I — A playing the
role of BN"Then
@) m@)I = 0() - (I — 4),

'ﬁ‘ljef‘e C(z) is & matric polynomial and B = m,(4) = 0. Substituting

\(*7) in (6) and the result in (5), we find
D(x) - (ol — A) = h(x)C{z)}(xl — A),

20 that

(8) D(z) = h(z)C(z)

by the uniqueness of the quotient @ in Theorem 7-6. The equation
(8) asserts that the polynomial h{x) divides all the elements of the
matrix D(z). As observed following (4), the ged of these elements is
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1, so that %(x} must be a constant, A, and (6) becomes

falz) = k- miz).
The moni¢ property of f.(x) and m(z) then implies that & = 1, and
this completes the proof of Theorem 8-3.

A square matrix 4 s called idempofent if A2 = A, Such matrices
are the subject of attention not only in Exercise 8 below but also in
numerous other places in the remainder of the hook. Another inter-
esting claws of square matrices 4 consists of those for which some ¢
power A* is the zero matrix. Such matrices 4 arc called nilpotent.

e NN

EXERCISES O

1. Use Thearem 8-3 to show that similar matrices have the same mm_unum
polynomial,

2. Tet 4 be w square matrix over &, and let X be a ﬁﬁld\conta,mmg F.
Prove that the minimum polynomial of A over F is alsobile minimum poly—
nomial of 4 over . \ /

3. Prove that, A is nilpotent if and only if its nu,ngnum {or characteristic)
polynomial has the form 2. \

4. Bhow thut the minimum polynomial of: A is linear if and only if 4 is a
scalar matrix. &N

5. Using the vesult of Exercise 4, pmve that i A i a 2 X 2 nonscalar
matiix, the minimum and characteristic pelynomials of A are equal.

6. Prove that all n similarity ind@riants of the n X » zero matrix are equal
to £ Do this by eompuding ‘oftly the characteristic and minimum poly-
nomials and reasoning frordkthese results.

7. Find the '~1m11‘ulty ‘mvariants of I, without computing ged's of sub-
determinants. W

8. Prove that A i ,% 1dempotcnt if and only if one of the following conditinns
is satisfied: {a) c& 0; (b) A = I; (¢) 4 has minimum polynomial z* — .

84 Equﬁl charactenst:c and minimum polynomials. Since the
variaptactors of any matrix over F[z], in partieular of »I — A4,
all df¥idke tho ono of highest degree, we now know that the characteris-
tic p 1}'110111131 #(z) of A is the product of the minimum pelynomial
M{z) by certain monic divisors of m(z). The latter divisors are all

Lif and only if m(z) = f(z).

" Lemus 8. Let A have characterisiic and mintmum polynomials
both equal* to f(x), and B have characteristic and minimum poly-
h‘_'_'_‘—‘—~—\_

* A matrix with minimum and characteristic polynomials equal is some-
times called nonderogatory.
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nomials both equal to g(x). If glx) = f(x), B and A are similar {and
converselyf).

Since their characteristic polynomials are equal, 8 and 4 have the
same size, n X #. Both have n — 1 gimilarity invariants equal to I,
and one invariant equal to f(x). The similarity of B and A follows
from Theorem 8-1. The converse is an exercise for the reader.

For every menic polynomial g{z) we shall see that theve is o matrix

having g{z) as its only nontrivial similarity invariant. N\
A monic polynomial of degree { over § may always be wyitten in
the form \ )
(9} g=g(@) =2 — a ' — - — o — g\
Associated with this polynomial is the ¢ X £ matrix/y"
- - N
0 1 0 ... 0 0 ¥
0O 0 1 ... 0 0N
.. . s,
(10) S SO =,
000 0 ... 0V 1
[0 @ @ (SN a4

which is designated by C(g) €8 show its relation to (9), and which is
called the companion n}gfﬁix of g. I ¢ = 1 this requires elucidation.
Then ¢ = 2 — a and C{j}fis the 1 X 1 matrix C(g} = (a). Companion
matrices will appear prominently in the canonical matrices for the
similavity re]a.ti;\m;.uf

THEOREMT*Q%. The characteristic and minimum polynomials of the
compa-\n@?i'matrix of g(x) are both equal to g(x).
Tbe{&i&racteristic matrix of C'(g} in (10) is

\ NS

~O [z -1 0 ... 0 0 ]
\/ 0 x =1 ... 0 0
(11)
0 0 o ... x -1
_'_GO —d1 =t ..., —@Grs *-— a-g_l__

"The determinant of (11) is the characteristic polynomial f(z} of C'(g_),
and may be computed after adding to the first column of (11) certain
!
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multiples of later columns. Then to this first column add 2 times
column 2, ¥ {ines column 3, . . ., 1 times column £ There results
a matrix whose first column is zero except for the bottom element
which 18 precisely g{z).  lixpanding according to the elements of this
modified first column, we find

Je) = (=g} |—Loa| = ().

It remains to prove that g(z) is also the minimum polynomial of C(g).
Sinee (11) has one (¢ — 1)X (¢ — 1} subdeterminant, {

=l = (=1) = =1, ' e Y
- the ged of ull subdelerminants of this size is ¢, = 1. But (Thgorem
7-2) N
gy = I I O
fulz) = e Gt f(=), 'M'.\\

so that f(z) = f,(2). But Theorcm 8-3 then fi iﬁhﬂé the proof by
asserting thut f(z) is the minimum polynumi&i’.\‘\

ExkRCISES NV

1. Bhow that the characteristic and minfmlﬁn polynomials of a matrix 4
are equal if anel only if 4 has only onewipntrivial similarity invariant.

2. If the churacteristic polynomialyo! a maftrix is a product of distinet
linear factors, prove that it is equal t6 the minimum polynomial. Is the con-
verse true?  Why? m\m

3. Prove that the charactérigtic and minimum polynomials of an n X »
matrix A are cqual if ;LJ]&(mly if the ged of all (n — 1) X (n — 1) sub-
determinants of 27 — 402 1.

4. If 4 = C(g) iglfe/companion matrix of g = g(&) = 2° ~ @ —be — ¢,
calenlate A% and/A8“and show by direet computation that g(z) Is the mini-
mum polynowialyof 4, ini

5. 1f 4 £°C1y) for any monic polynomial g(z), prove that the minimum
and chapgeteristic polynomials of A7 are both equal to ¢(z)-

GMI;F'ﬁ 18 the = X n matrix

)
\ &) €1 «ss LCal

Cue1 Co -+ Tn2

£1 €2 ... G0
find & companion matrix A such that B = coad*™ + - +ad + ool

Hence prove that B is nonsingular if and only if the polyrEomwials ?” —1 and
Cagpn L 4+ .. —+ 2 4 ¢pare l-clatively prime. Use IExerecise a of Beetion 7-9.
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8-5 Direct sums. The theory of similarity is interesting not only
beeause a canonical set is obtainable over a general field, but also
because of the variety of well-known canonical sets. All of these
sets employ companion matrices and dircet sums (see Scotions 1-8
and 4-3). :

It should be recalled from Chapter 1 that if

B =dag (B, ..., B, C=diag (Cy, ..., .,

with C; of the same size as By, =1, ..., r, then N\
BC = diag (B/(y, ..., B.C.). O

Moreover, if P = diag (P, ..., P,) is nensingular, its iL}\}(.:;se 15
Po=diag (P ..., PR, oo )

Then -\

P-BP = diag (P7'B.P, . . ., I\’;‘B,}’,).

This proves the first part of the foHowiL@:}efnma-, the second part
having s like proof. )

Lemyws 82, If BidssimilarfoGoni = 1, . . ., v, diag (B, . .., B)
@8 sumalar o diag (Cy, . . ., C)XNIS B; and C; are equivalent matrices
over §lzl, i=1, ..., 7, digg{By, ..., B,) is equivalent over Fz] lo
diag (Cy, ..., C,). A :

It is convenicnt to {nmcr}v that each direct sum

.

(12) S VB = ding (B, ... B)

is gimilar fo am?;m'étﬂx

a3 C = diag (B, ..., B:)

obtaingdby “shuffting” the blocks B;. The subseripts 4, . - -« , i

in ‘Qi'}) denote an arbitrary rearrangement or permutation of the
,n\at{ﬁral arrangement 1, 2, ., . r,

N\

7

Lemvs 83, A direct sum (12) over § 1s similar to any rearronge-
ment (13). A divect sum (12) over (2] 43 equivalent over Flz| to any
regrrangement (13).

It suffices to consider a rearran gement (' obtained by interchanging
only two blocks in (12}, since a suitable succession of such steps yields
an arbitrary permutatien of the blocks. Suppose, then, that C resuits
from interchanging blocks B; and B; in (12). Consider an identity
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matrix of ibe same size as B in (12) and partitioned in exaetly the

game manner as B
(14) I =diag (I, ..., I.).

Let P denote the matrix constructed by the inferchange of the 4th
and jth columng of blocks in {14). Then multiplication of B on the
right by F accomplishes the interchange of the 7th and jth columns of
blocks in £, andd muliiplying on the left by P’ does the same for rows.
Thus P'B# ix ihe desired matrix €. Since P'P = I, however, we finds

that —
@ =P, PIBP=C, et
completing the proof of the first statement in the lemma. 3inoe 1P|

certainly is 2 nonzero clement of &, the last equation m;-x}{z‘bé inter-
. . S 3
preted as equivalence over #[z] and this suffices to proy¢ithe second

" statement in the lemma. ~.“’.\\

“If B =diag (By, ..., B,), then
Bt = diag (B, .. ., Bf};S\"
whence, if m(z) = my+ mz+ -+ -mngz‘tﬁ‘\zadny polynomial over 5,
we find that o\ >
m(B) = diag [m(@); - .., m(B)] |
This property of direct sums is fﬁéed frequently, and in particular in

the proof of the next l(—tmm&\:"

Lemms 81, Let B m@‘? have minimum pelynomials !}(x? and h(z),
respectively,  ThepNthe minimum polynemial of D = diag (B, C)
15 the least conpibt” multiple of g(x) and h(z), hence 13 g(x)h(@)
g(x) and !a(:t:)\:are relatively prime.

For an}'\L{(i ‘nomial m{z) over the scalar field 5 it is true that

W m(D) = [méB) )]

Then m{D) = 0if and only if both of the following equations are valid:
m(B) =0, m(C)=0.

By Theorem 8-2 these equations are equivalent to the requirement

that hoth g(x) and A{z) divide m(z). The minimum _polyno_mml

must, then, be the monic polynomial of least degree which satisfics

this requirement, and this is precisely the definition of lem [g(@),h()}].

& final statement of the lemma is clear.
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Lemma 85. Let pi(x), ..., pa(x) be distinct, monie, irreducible
polynomzals over ¥, and let A; be a matriz having minimum and
characteristic polynomials both equal to a power

(13) pi(z)i. (G=1,...,9)
Then (' = diag (A, ..., A,) hus
J@) = pul)a ... pel)

both as ils mintmum and its characleristic polynomial. Hence C i3
" similar to any mairiz having f(x) as both characteristic and minimdn
polynomial. O\

If (15) has degree n;, |2f — C| is the product of the detgr‘ziﬁnahts
|wla; — Ajl = pila)", Y

so that ¢ has the alleged characteristic po]ynomi‘ﬂi;\‘it--s minimum
polynomial is also f(z) by repeated application {\bemmu &-t.  The
final statement is an immediate application gf\\lﬁmma 81

ExBrerses N

1. Prove the second part of Lemma 8-2. I

2. Btate and prove the extension of Lemma 84 to the case D=
diag (B, ..., B). &~

3. Bpecify matrices A,, . .., As{’u’lﬁlling the hypotheses of Lemma 8-5.

4. If B = diag (B, B., By) s C = diag (B, By, B:), where all the By are
1 X n bloeks, construct a Iglat}ix P such that P7IBP = (,

5. Bhow how to make\ﬁe Tepeated applications of Lemma 84 required in
the proof of Lemmy 826,

86 .Prescribedinvariants. We are in position to get the first ca-
nonical Set,{T}lfiorem 8-6) for similarity, the canonical matrices
disp]ayin%’th’eir similarity invariants in the form of companion
matric,eg} In the process we discover another important fact
(’T‘\l]eQrem 8-5), namely, that we can always find an n X »n matrix
ﬁ‘jng arbitrarily preseribed similarity invariants fi(z), .. ., Fal®)s
subject only to the necessary conditions:

(i) n = the sum of the degrees of the fi(z),

() fi(x) divides fa(e), = 1, ..., n— L.
Condition (i} reflects the fact that the characteristic polynomial of &
matrix 18 the product of its similarity invariants. Note that cither
all of these invariants are of degree one (hence cqual), or else seme
of them are trivial, that is, equal to 1.
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TaroneM 8-5. Let qi{x), ..., g-(x) be nonconstant monic poly-
nomials vrer ¥ such that g.(x) divides gin(x), i=1,...,r— 1, and
let Clg.) denole the companion matriz of gi{z). Then the motriz

B = diag [Clgy), - . -, C{g)]
“hees qu(x), .. ., gAx) as s nontrivial similartty tnvariants.
Let deg ¢; = ny, so that C'(g:} is e X 0. Then 2 — B is the direct
sumn of the blocks '

alw— Clg), S
whence the characteristic polynomial f(z) of B is ‘O
e \
fx) = gulz) - gola)- »

If deg f(r) = n, B has n similarity invariants, of which priaéié’ely n—r
must be 1 if the theorem is true. The theorem ‘n}'ll‘- be proved if
xl — B i proved equivalent over F[x] to ’ '
(16) D() = diag [1, ..., 1, a(&), . 391

Since xf., — C{g,) has g: as its only ng:-xip}ivial invariant factor, it
is equivalent over Fz] to QO
' B, = diag [1, .0 L, g:(2)].

Then (Lemmu 8-2) =7 — B is Qgiﬁx?alent to

Di(x) Ldiag (B, ..., B:)-
By the shuflling proc.(-‘s.'ii;f’ Lemma 8-3, Dy(x) s equivalent to D{(z)
n (16). This shows h}at xf — B is cquivalent to D(x), which is &
canonical matrix femequivalence; its diagonal elements are the in-
variant factors Ohel — B. Thus qi(z), . . -, g-{z) are the nontrivial
similarity im-'\atg\:}énts of B.

The fir 't\éta.honical set for similarity follows quickly from Theorem
8-5. Le;) be an n X # matrix whose nontrivial similarity invariants
are QIQF).;- .+, g(z). The matrix B of Theorem 8—5 is 7 X n (why?)
aia‘:hﬂs the same nontrivial similarity invariants as 4. I{tencv’s boifh
ha¥e n — 7 invariants equal to 1. The fundamental criterion in
Theorem 8-1 implies that B and A4 are similar, ’_‘his proves

 THEOREM 8-6. Every square matriz is similar to the c_lz'rect sum of
the companion mairices of its nonfrivial simlarity DAriants.

_ It should be recognized that if 4 has cnly one nontrivia‘l s.imila.rity

Invariant f(z), this theorem does not provide a direct sum 51r'mlar to 4,

Rather, it implies that A is similar to C(f). This slight discrepancy
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is akin to others such as a “product’ which in special cases may have
only one factor,

The blocks ('(g;) in Theorem &6 may be writien in any order by
authorization of Lemma &-3. If we arrange them in a prescribed
order, suy in the order of Increasing size,* there results a completely
unique mafrix similar to a given matrix. With such an agreement
Theorem 86 furnishes a cancnical set for similarity.

Q"
Exxrcises N
1. By calculating invariant factors of I — 4 find the canonicq.i\‘ atrix of

Theorem 8-6 similar to the matrix .\

11 —1 R
A=|0 0 0] R4S
11 -1 Q)

Then obtain the same result again, but this {fwe prove without using
Theorem 8-3 that 2% is the minimum polynomial 0¥/, and & is the elaracter-
istic polynomisl. From these facts obtainyall the similarity invariiats.

2. If A is nilpotent prove that its canenical matrix of Theoren 8-6 is
diag (Uny, ..., Un,), where U denoteslthe matrix C(z%), 7 is the nuniber of
noatrivial similarity invariants of 4.3 ;i’.nd M2 e = E M,

3. Find the similarity invariaﬁﬁ; of Is and write its canonical matrix of
Theorem 8-8, Ve _

4. Show without cousiderations of rank that the canonical matrix of
Theorem 8-6 similar t%;@e zero matrix is the zero matrix. Use the result
of Exercise 6, Section, 8-3.

8-7 Indecomiposability. If a matrix 4 is similar over  to a direct
sum of tﬁ\:g\'g} more ratrices, A 1s said to be decomposable over F;
otherwise ' is sndecomposable over . We shall find necessary and
mfﬁcjg%tt conditions for indecomposability.

o\’ : 3
’"‘;EHEUREM 8-7. If A has characteristic polynomial f(z) = ¢(x)d(x),
w:here ¢(x) and d{z) are relatively prime, A is similar {o a direct sum
diag (C, D), where €' and D haye characteristic polynomials ¢(z) and
d(x), respectively.

_ Let the nontrivial similarity invariants of 4 be n@), ..., o)
_Where each gi(z) divides gi.a(z). Then 4 is similar to the matrix

“‘M: P:locks of the same size cause no difficulty, since they are identical.
i T y‘
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B = diag [C{g), - - -, Clgn)],
and
J@) = e(x)d(z) = qulz} - - - g:l2).
Each irreducible factor of g:(z) divides e¢(z) or d{z}, but not both,
Hence we find (Exercise 1, Section 6-5) unique monic polynomials
¢:i(z) and o () such that c.(z) divides ¢(z), di{z) divides d(z), and
gix) = ei(z)di(2). t=1,..., ?')‘\
It is clear that ¢;(x) is relatively prime to di(x) and that \
o) = el oe), @) = die) D). D
Let s and £3; be the companion matrices A W
C:=Cle), Di=Cd), 7\
&
whete ¢; = ¢.(x) and d; = di(z). Then “\
S; = diag (Ci, Dv) N
has characteristic polynomial ¢.(x)di(z} = g&)‘ its minimum poly-
nomial is also g:(x) by Lemma &4, Thug\S; is similar to Cg:) and
(Lemma 8-2) may be substituted for Glg) in
B = diag [C(ades - -, Cg)):
Thus A is similar io ) N\
diag‘,(@, Dl: ey C"! D")'
By the shuflling proces‘a&f':is similar to
diag (C(>., Csy Dy, ..., Do) = diag (C, D),
where the charae’@&iétic polynomials of
eding (€, ..., C), D=diag®Dy ..., D)
are C@»’)ﬂﬁh‘ d(x), vespectively. The proof is complete.
,T\H@'ﬁﬁ;;‘\{ 8-8. Let A be a square matriz over 5. Then A s mde-
\Qﬁ?nposable over 3 if and only if its minimum and chamcf‘ie’r?siw

Polynomials are equal and have the form p(x)e, where p(x) s frre-

ducible oper F,

Let 4 be indecomposable. If A had two nontrivial similarity in-
variants, Theorem 8—6 would provide a ¢ decomposition” :for A; that
'8, 4 would be similar to a direct sum, contrary to a:ss.umpt-lon. Thus
there js only one nontrivial invariant, and the minimum and char-
acteristic polynomials of A are the same polynomial f(x). The
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factorization of f(z) into irreducible factors may he written ag
J@) = pulz) - - - pola)e,

where pi(z), ..., ps(z) are distinet, monie, irreducible polynomials
over¥, Ifs> 1,
Jx) = p@)rgle), ged [pu(z)e, ¢l@)] = 1.
By Thoorem 8-7, A would be decomposable. Hence 5= I, and
fix) has the alleged form.
Conversely, suppose that the minimum and characteristic polv-

nomials of 4 are both equal to p(x)¢, where p(z) is irreducihie Oyer 7.
If 4 were similar to a direet sum S\

C 0 (".}g .
8= I:O D]: X N

L
the characteristic polynomial p(z)c of S would he the product of
those of ¢ and D. Thus the characteristic p({lynomla!s of ¢ and £
are of the forms <!

\
pla)s, plo)h, e X d= e,
where both ¢ and d are less than e, | Leﬁ b denote the maximum of ¢
and d, and let o
miz) = pﬁa&)f‘ b <e.

Then m(€) = 0 and m(D) £ 0, since the minimum polynomials of €
and D divide m(z). Slgm\e m(S) = diag [m(C), m(D)], we see that
m{8) =0. The mmm{\lm polynomial of S and of A thus hag smaller
degtee than has p{r)’, contrary to the hypothesis that p(z)e is the
minimum polyppihié,l. The assumption that A is similar to a direct
sum thus leadg\6 a contradiction whick establishes the theorem,
7N\
A\ Exrrcrsus

1. Fmt: ench of the following polynomials f(z) with cocfficients in the
rational number field R, consider the matrix A = C(f), whose elements lie
i o and whose minimum and characteristic pelynomials are equal o f(z).
Determine in each case whether 4 is indecomposable over ®y, ®, or C.

{a) z* — 3z + 2.
(b) z* — 2z 4 3.
(c}) (¥ — 2+ 3%
(d) (x* — 5)2

(e) (& — 2)%

2. If the minimum polynomial of A4 is the product of two relatively prime
polynomials e(x) and d(z), prove that 4 is similar to the direct sum of two
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matrices whose minimum polynomials are ¢(z) and diz), respectively.
Hint: This iz u corollary of Theorem 8-7,

8-8 Elementary divisors, The canonical matrices
(17} B = diag [Clgd), .. ., Clg,)]

of Theorem ¥ 6 wre direct sums of blocks C{g;) which may be de-
composable since gy may have several distinet, irredueible factors.
The maltrices (17), however, may be used in conjunction with others,
results to produce a caneonical set which is a direet sum of ipdé-
composahle matrices. R\,

There is & more compelling reason for attempting to imp.r;(}ve on
Theorem - 6. It is desirable to choose canonical sets so ghé‘t for any
gnen matrix 4, the canonical matrix similar to 4, ls at least as

“simple’” as 4. Yet it is possible to find a dmgonal“ﬁabmx A whose
canonical muatrix of Theorem 84 is nondiago qa]! This form of
embarrassment never oceurs for the canonical set'of the next theorem.

Let A, und the similar matrix B in (17)J txmve characteristic poly-
nomial Y

fle) = pl®)t & 4;-8(1:) g
where py(2), . , Pe(x) are dlstm(,’t monie pulynomials which are
irreducible over the scalar field™ &, and cach ¢; is a positive mteger
Then the similarity mvaua.Q‘h, ai(x), ..., ¢(x}), obeying the divisi-
bility conditions \& )
\ ’\Q’g(ﬁt}') divides gipa{z}, f=1,...,7r—1)

are of the form <

us) 27 @ =p@np@e (=10

Note that \mp of the e;; may be 0, but if ey is positive, then eiy,; is
also DUSlle\’e sinee

\ 3
Iﬁl €it1,j £ €.

rﬁ\ condition (19) simply expresses the divisibility property of the
111\rar1a,nt5

Those polynomials
pila)si
which appear in the sirnilarity invariants (18) with nonzero exponents
% ate called* the elementary divisors of 4 over §. They are powers

* Bometimes called the elementary divisors of #f — 4.
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of irreducible polynomials over ¥, and tneir product is the churacter-
istic polynomial of A. Notice that the list of elementary divisors
may include duplications. - A matrix over ® may be 12 X i2 and
have nontrivial similarity invariants as follows:

qfx) = {x — Dz + 1),
@) = (z— 13 z+ 1)@+ 2),
gz = (z— 1Pz+ D2+ 2).

Then nine similarity invariants are 1, and the list of clemenfary

divisors is N
»N
T = 1! (x - 1)27 (.'IC - 1)2! '\ K
z+1, 2+1, 41, GO
2+2, 22 O

&
TaroreM 8-%.  Every sguare mairix over ¥ z's"’sf\z‘milar fo the direct
sum of the companion matrices of its elementtnly divisors over 5.

Te prove this theorem, it suffices to st {4¥ith the matrix 8 in (17)
similar to A, A typical block, or dirébt- summand, in B iz €{g),
where g; = ¢:(z) is shown in (18) Th'e elementary divisors arising
from g¢;(x) are then .

(20) p@)E Y. ., pua),
where it is understood tha,t those polynomials in (20) which are

constants (those with e »s= 0) are to be deleted from the list. Then
the companion matl‘\ces

O, Ay = Clpi(x)es]

have minimuﬁ}'\and characteristic polynomials cqual to these ele-
mentary divisors. By Lemma 8-5 the direct sum of these companion
matrlcai\for any fixed value of ¢ is similar to C(g;) and {(Lemma 8-2)
may, bc substituted for C{g;) in (17). Theorem 8-9 is thus established.

The elementary divisors of a matrix are obtainable by factoring
the similarity invariants into products of powers of distinet, irre-
ducible factors, Conversely, given the list of elementary divisors,
the similarity invariants are easily constructible. Suppose, for
example, the elementary divisors of a matrix over ® are those in the
list above Theorem 8-9, This list may be rewritten as follows:

(=10, z+1, 2242,

(21) (=1, z2+1, 2242,
z—1, x4 1.
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Trom the original list we have selected the highest powers of all the
different. irrecducible polynomials; these constitute the first row above.,
Y¥rom the reinaining list of five polynomials, the highest powers were
again selected and arranged as the second row above. The next
repetition of Lhe process depleted the list. If the polynomials in each
row are multiplicd, the three products obtained are the nontrivial
similarity invariants,

That the procedure outlined is universally valid can eagily be seen
by use of the divisibility property of the similarity invariants. Singex
the elementary divisors thus determine the similarity invariants,,and
conversely, Theorern 81 has the following corollary: Two mébriges
over § are similar if and only if they have the same e}e’m\cnm_ry
divisors. ) N

Attention is called to the properties stated in Exercises 5 and 8
velow. An srbitrary set of powers of irreducible'"pblynom.ials can
occur as the elementary divisors of a matrix; anda'matrix 4 is simi-
lar to a diagonal matrix if and only if all thel&bfmentary- divisors of
A are Hnear. ,\ ‘

There is one point deserving special @nphasis in connection with
elementary divisors of a matrix ovet. Suppose that 4 is & real
matrix whose elementary divisors wver G are those listed in (21_)-
Over the field @ the poiynomi;if':af2 1- 2 i no longer a power of an
irreducible polynomial, Thils the list of elementary divisors of 4
over € is not (21) but rayg-hc\':

(-1 41, s +vVE a- VT,
(22) (c—~A¥ z+1, z+v=2 z-V-2
2T, x4+ 1
A _

The simild#ty invariants of A do not change as the scalar field is
enlarged'”sm { the canonical matrices of Theorem 8-6 are not affected
hy enldrgement of the field. Since the clementary divisors are sub-
joet &0 change, so are the canonical matrices of Theorem 8-9. For
the matrix A, whose clementary divisors over & are listed in (21), the
tanonical matrix over ® is

diag (4., Ao, 42, B, B, B, €, C),

0 1 ro 1]
C=|:_2 0]3 {12_' _1 2 '

B= (-1, A= (D).

where
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Over C the elementary divisors of the same matrix are listed in (22)
and the canonical matrix is

dla'g (AI: A% Aﬁ: Br B’ Br Cl: Cly C?y CIE);

where
Cr=(—vV=2), Ci=H/-2).

ExercIsEs \
1. Consider a matrix 4 over the rational number field &, haviag:ih each
of the problems (a)-{d) the given list of nontrivial gimilarity invii;\izmis. In
each case find the three canonical matrices of Theorem 8-9 s‘iufgllla} to 4 over
&, R, and @, respectively, e\
@) @ -2, 22 -2 - RS
(b) (x2 — 4% 27 — 4. Y
(c) (2* 4+ 4P 44 O
(d) (@ - 42, (2 —2),z — 2. D
2. If a matrix 4 has the following list of'aemcnmly divisors, write the
canonical matrix of Theorem 8-6 similar 0N z — 2, (x — 2)%, 22 + 1.
3. If A is an idempotent matrix {}iﬂgréht from I and 0, show that the
minimum polynomial of 4 is #* — xa0d that the characteristic polynomial
has the form (z ~ 1)%*. Then ugs Theorem 8-9 to prove that A js similar to

Q[ o
'zfz\B_[o 0]'
2N

Thus the rank of A¢iy the number of elementary divisors cqual to z — 1.
4. Using theréstilts of Excrcise 3, give a construction {in terms of non-
singular matri{ég) for all idempotent matrices over a given field F. _

*5. Let ()" .., f,(z) be powers of monie polynomials which are irre-
ducible g¥érF. Prove that there cxists a matrix whose clementary divisors
are the f(x). Hint: The similarity nvariants are determined.

pocket A = diag (44, ..., 4,), where cach A; has characteristic and mini-
‘Tt polynomial equal to fi(z), a power of a polynomial ps(z) which is irre-

Acible over the sealur field ¥.  Use Exercisc 5 to prove that the fi(z) are the
elementary divisors of A over .

*7. Let 4 =diag (4y, ..., 4;). Prove that all the elementary divisors
of all the matrices A constitute the elementary divisors of 4. Hint: Apply
Theorem 88 to each 4;, Use Exercise 6.

%8, Use Theorem 89 and Exercise 7 to show that a maftrix 4 is similar to
a diagonal matrix if and only if all of the elementary divisors of A are linear.

9. (a) Let Abediagonal. Prove thatthe canonical matrix of Theorem 8-9
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similar to A is A itself,  (b) Find a diagonal matrix A such that its eanonical
matrix of Theorem 8-6 is nondiagonal.

THE RATIONAL CANONICAL SET

8-9 The rational canonical sef. Perhaps the most important of
the canonieal sels for similarity is the one to be obtained in this see-
tion. It is ealled the rafivnal canenmical set, and the companion
matrices apperring in it are all of the form C(g), where p = p(z) is
irredueible over the sealar field §.

We shall have use for & square matrix ¥, all of whose elements are
zero except the one in the lower left-hand corner, which is 1. The
symbol N will designate such a matrix in this section, the size of &\
heing determincd in each case by the context. N\
" Let p = pix) be any polynomial of degree ¢ over §, C(p) its, com-
Panion matrix, and M = C.(p) the matrix _ A\ 3

C@m N0 ... 0O
0 Cp N ... 0
cm={ - - - aov
0 0 0. N
0 0 8 ... C(p]

where ¢ is the number of bloeks & (;;J)’on the diagonal. Thus } js an
¢ X e matrix of square blocks,néé,ch one £ X 1, so that M as a matrix
of sealars is n X n, n = et. ’;ﬂhe effect of the matrices N is to produce
&n unhroken line of ongs\just above the diagonal of M.

Lemma 8-6. The'atriz M = C.(p) has minimum and charac-
teristic polyno m\zalq both equal to p(x)e. Hence it 13 indecompasable
over § if p{gNy Trredusible over .

Then >.<\':n"‘matrix »I — M has just above its diagonal an unbroken
live giefoments equal to —1. This line is the diagonal of the sub-
Matring obtained by deleting column 1 and row n.  All elements
above the diagonal of S are zero, so that

8] = (=1 = %1

'.Phen the ged ¢, of all subdeterminants of » — 1 rows and (_:olumns
By =1. Since 7n = |z — M|isthe characteristic polynomial of M
and o Gny = ¢ 18 the minimum polynomial (Theorem 8-3), M has

QY
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the property that its minimum and characteristic polynomials are
equal. It remains to show that this polynomial is p(z)*. But

eI — M| = iz, — C{p)|* = pla)".

The final statement in the lemma amounts to Themem B 5.
If p = p(x) is irreducible over &, the matrix M = (.(p) above will
‘be called the hypercompanion matrix of p(x)e.

Turorem 8-10. Every square matrix is similar to the direct sum
of the hypercompanion matrices of ils elementary divisors. Q

We may start the proof with the canonical matrix of Theoténl 1)8-9,
which is the direct sum of the companion matrices C(p?) of e v arious
elementary divisors p(z)°. - It then suffices to show thateeich matrix
C(p®) is similar to the hypercompanion matrix Cof@)" Bul this is
true by Lemma 8-1, since both matrices have p(x)‘e\as minimum and
characteristic polyncumlal \

This result furnishes for each 4 a matrix B which iz unigue apart
from the order in which the hyp{,r(,ompam\en matrices appear on the
diagonal. If a particular order is agréegd*upon, Theorem 8 10 gives
a canonical set under similarity fqp.matmces over any (ixed field 7.
Tt is usual, even without specifwing’ any particular system of order
for the diagonal blocks, to refeeto any direct sum of hypercompanion
matrices as a rational canomcal matrix,

The name rational cam)m(-al matrix refers (confusingly to the un-
initiated) not to thed s\ﬁonal number field but to an arbitrary fAeld!
Addition, subtractian, multiplication, and division are called rational
operations, and these arc precisely the operations which can be carried
out in any field.) » For each square matrix A there is a matrix P such
that P- AP\J& % rational canonical matrix. If all the elements of 4
lie in a %’ld'ﬁ the matrix P can be chosen to have elements in F
The ndme rational canonical matrix* is motivated by the fact ‘rhat
the thhversion of A to its canonical matrix P-4 P requires no field

ar}gor than the smallest field containing all the clements of A.

The only irredueible polynomials over € are linear. Hence cach

elementary divisor of a complex matrix is a power
play = (z —a)

* The same argument, however, applies equally well to the eanonical

matrices of Theoremn 8-6, and some writers use the name rational eanonical
matrix with reference to th.ls theorem.
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of a tinear polynomial  — g, and the corresponding hypercompanion
matrix is

e 1 0 00
0 a 1 0 0
(23) Clp) =
0O 0 0 a I
|0 0 0O 0 o

Thus each complex matrix is similar to a direct sum of matrices ke
(23). This special case of Theorem 8-10 was published by €.Yardan
in 1870 and is known variously as the Jordan or eassical cgnonical
form.  Genceralizing slightly we obtain: RS

CoroLLany #-10. Let A be a mairiz over § such\mai the characteristic

polynomial of 4 factors over & info linear facloed ™ Then A is stmilar

to a direct sum of matrices having the foin(23), each matriz (23)

corresponding to an elementary divisor (&3 a)°.

Supposc that a real matrix 4 hag some elementary divisors which
are powers of irreducible quadraties. In this case 4 is not similar
over & to a clussical canonicgmatrix. Over €, however, the same
matrix 4 is similar to suchra\matrix.

An elementary divisc {&hich is linear is called simple. Then (23)
becomes the 1% 1 adtrix (a). The case in which all e]emegtary
divisors are simpldds of considerable interest because the rational
{and clagsical} gv&:;}(ini(:al matrices are then diagonal.

N\

'§“

1. Leﬁ:;{ be an arbitrary square matrix over the rational pumber ﬁcl(.i,
and Coikider the three canonical matrices similar to 4 which are defined in

edferns 8-6, 8-9, and 8-10. Which of these canonical matrices need not
Temain eanonical when all possible enlargements af the sealar field are con-
templated? ‘

_2' Show that the elementary divisors of A are all linear if and only if the
Mningm pulynomial is a product of distinet lipear factors. Is the same
tm.e for the characteristic polynomial? ‘

3. The following matrices over the rational number fxe}d are in ’th'e
“4nonieal form of Theorem §-10, List all the elementary divisors and simi-

2 &

ExuRCISES
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larity invariants, and write the corresponding canonical matrices of Theorem

84,

{a) m 10000 0 0
201000 0 0
D00 1TOOD 0 O
002010 0 0
000001 0 0f
D0 oo 20 o0 0
000000 —1 0 N
o000 00 0 —1] A
A
(b) 210 0 0] \5\
021 0 ¢
602 0 ol AR
000 ~1 0f &%
oo 0 0 —1[o0
)\
() 2 6 0 0 OV
02 0 0,0
002 Vol
00 0.1 0
[0 0 AN 0 —1
.:C,{“

4. Each of the following madiiecs ovor the rational number ficld G is in
one or more of the canonig@hforms of Theorems § -6, 8-9, § -10. For each
matrix determine which eahonical forms already apply and find the remaining
canomiecal forms over qu\sﬁnila,r to the given matrix,

{n) The matrig ilffxercise 3(a).

{b) The mat-;;ifé’ in Fxereise 3(¢).

{e) \, 1 ¢ 0
Qv [010}
O 0 0 2
RO 0 100
N\ 6 010
N/ {1330'
0 001

{e) 010000
¢ 01000

0001100

-4 0 400 0]

0000 01

000020
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{f)

friee I . - Y (S Y s
Lo e B o B e B e
SO D=
Soo =D o
oo oD
= R e B e R )

¢

5. For each matrix of Exercise 4 find all three eanonical forms over ®.

6. Find s polynomial p = p(z) such that C(p9) = C.(2) for every positive
integer ¢. 74
7. Find a necessary and sufficient condition on the elementary divigors
of 4 in order that its cancnical matrices of Theorem 8-9 and 8-10 ma¥k, be

identical. Hint: Do not overlook elementary divisors of the type 7%y

8. Find 4 necessury and sufficient condition on the sn’nllanty mv&nants
of a matrix 4 over u field F in order that its canonical matrices, uf Theorems
8-6 and &9 moy be identical. Then express the condltIOQ\n‘term% of the
characteristic polynomial. Show that every indecompgsghlé matrix over F
obeys the condition,

9. Bhow that every diagonal matrix is in the canan\c‘tl forms of Theorems-
80 and 8-10, but is in the form of Theorem 8—5 and only if it is a gealar
matrix,

APPENIHX .
8-10 Differential equations and sxmﬂanty Congider a system of
differential cquations

(2'1) aaih + - —i:"@suyn =bay+ -+ binny

where i =1 .., g, thé\boeﬂiuents a;; and by; arc constants, the y;
are unknown f‘LIIlCtlQIﬁS:Of {, and §; means
A L i, i=1,...,n)
:'\ . Hi= dﬂ (J H 3

This syste \15 much simpler than that considered at the end of
Chaptl‘l‘ 7 \but we shall use it only to demonstrate one placc where

ﬂmﬂ&rl{y thom} is valuable.

A= (a;;), B= (bi?‘)s

Y =col (.-, ya)y ¥ = ool G- oos 40)
80 that tho system {24) may be written as
(25) AY = BY.

:rery often A is nonsingular, whence if ¢ = A5, the system reduces
]

(26) . pcv.
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If we try to simplify the system (26) by a nonsingular linear substity-
tion

Yi = Ipathr,

where w1, ..., %, are new unknown functions and P = (p;) is a
matrix of constants, we find that

i = ZPtis.

Letting U = col (uy, ..., ), I7 = col {4y, ..., @), we have A
Y=PU, Y=PU=CPU \
(27) 7 . . d RGN
U=({Frcpuv. N\

Thus a nonsingular linear substitution on the y; (‘.-01’1}(651‘{!% the yystem
(26) with coefficient matrix ' into a new system (2“?') with coefficient
matrix D = P7ICP, which is similar to €. AN\

This excursion into differential equations\p@ints out onc way in
which similarity arises. It would be patkioularly beneficial to find,
if possible, a similarity "

PP 20
producing a matrix D which is difponal :
D= fii?ig”(rl, e Ta)
In this case the new systeni'(é?) hag its variables separated,

AN .

N = i G=1,. )
and can be integuited at once. The functions y; are then found by
the formula X< PU/.

>
8—11\C]\1'aracteristic roots of a function of a matrix. The roots of
the qﬁﬁ'act.erist.ic polynomial of a square matrix 4 are called the
characteristic roots of A (sce Chapter 9). Their importance for

\‘tlm study of 4 is atlested by the clussical canoniesl form (in which

the characteristic roots appear on the diagonal) and by the develop-
ments in Chapter 9, .

Let ry, ..., v denote the characteristic roots of A. If g{z) is any
polynomial over the scalar ficld F, we seek the characteristic roots of
g(d). In Exercise 7 at the end of Section 7—9 a methed is suggested
for proving the interesting and useful fact that the characteristic
roots of g(4) are precisely g(ry), ..., glr.). We wish to show here
how the classical canonical form may be used to give a simple proof
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of the same result, To accommodate this method we make the
scalar ficld 7 wo large that il ineludes all the . characteristic roots,

7, ..., Ty ol L1 Then A4 is similar to a matrix € which is a direct
sum of matrices like
e 10 .. 0 07
v » 1 ... 00
(28) .o .| =+ A,
600 ... r 1 K\ \)
a0 0 ... 0 r] . \.

where r is one of the r;, and the n diagonal elements of C {:ujeth, 3. ' Mo
Also, g(A4) is similar to g(C), as brought out in Section 82, Exercise 4.
Therefore, ¢(A) and g(€') have the same charactefigble’roots, so that
it suffices to show that the characteristic roots :OQQ(C) are giry), - . .,
g(-r,_‘). ~ ’
Since ' has only zeros below its diagenal, o little computation
shows that cvery power O also has this property, and that the diagonal

A

~

eleraents of (% are precisely R\
() rk, YN, 7.

L follows thut g(C) has only&eros below the diagonal, and has g(r),
ooy glr,) on its diugonz\f\“'T hen

lof — f{8), = [z — glrd] - - - [« — g{ra)],

50 that g(C) has t’ﬂe\ allegad characteristie roots g(ra), -« . g(r).
(The computation of the powers €% required in the proof above,
may be d(}m\’ theniently in the following way. First observe that
! CUmmu},};s with every matrix, in particular with ¥ in (28). DBut
W_he}l t%0' matrices, 4 and B, commute, it may be shown that the
b”ﬂnﬁfﬂ formula, for powers (4 + B)* is valid. Accepting this fact,
we find that :
(rI 4+ Nt = r5] + kr*IN + --- + N&
Notice also that N* has ones on the kth slant above the diagonal, and
Zeros elsewhere, and that N* = 0 if k = ¢, where Nistxt It fol-
lows that C* which is a direct sum of matrices Jike (*I + N)* h.a,s ZEros
fverywhere below its diagonal and the quantities (29) on its diagonal.
bis is the fact needed above.)
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It is easy to generalize the above result about the characteristic
roots of g{a) to the case in which g{x) is a rational function of z.

THEOREM 8-11. Let A be a square matriz over § and lel
glx) = c(x)/d(=),
where c(z) and d(x) are polynomiols over § and d(A4) is nonsingular.

Then if ry, . .., I are the characterisiic roots of 4, g(r1), ..., g{ra)
are the chamcteriszic roois of g(4). £\

There appears to be ambiguity here as to whether g(_;'is\means
e(A)d(A) " or d(A)'e(4). But, as the proof below shou$,*<

u(A) = d(A)
15 & polynomial in A with sealar coefficients. Heﬁu' u(A) commutes
with ¢(4), thus dispelling all ambiguity in the d’e\ﬁmtlon of g(4).
The hypothesis that d(A) is nonsingular is equn ralent to the eondi-
tion that d(z) is relatively prime to the chdricteristic polynomial f{z)

of A (see Section 7-9, Fxercize 3}. Thﬁs‘

(30) w(@)d(z) + :«,(::;)j‘(x) -1=0
for suitable polynomisals %(x) :uld w(x), s0 that
u(dd(4) -

Tience «(4) is the inverseof d(4), and if we consider the polynomial
O h) = c@)ul)

N\ o
we have p\ N\

\<&" h(4) = g(4).

Sinee h(:t:) g ‘4 polynomial, by the proof made earlier we know that
h(r), s ) hir.) are the characteristic roots of h(»’l) gldy. It re-
mamé\» IV 50 prove that k{r;) = g(r)), 1 = 1, n. But from (30)
anﬂ $he fact that 7(r;) = 0, it follows that

QY weddlr) =3, dirt =,
) = S5 = o(rdutr) = 1.

“This completes the proof.

?

* We already know that d(4)7 is a polynomial in d(4), hence a poly-
‘pomial in 4.



CHAPTER 9

_ CHARACTERISTIC ROOTS
N
9-1 Characteristic vectors., If A is an n X n matrix over F with
chargeteristic function f(z), the scalar field F may be taken to be so

large that f(x) factors linearly: . &N
(M) JEy= @ =) = r). O
The roots ry, ..., r, of f{z) are called the characieristic roots’of> 4™

lalso called latent roots, proper values, secular roots, gz’g'eajiga\lues).
From the definiiion of the characteristie polynomial it is olear’ that

lrid — A| = 0. G=1,..., 0

Although an n X n matrix always has n chargc@ristic roots, they
need not be distinet. The real matrix A = diag'(}, 1, 1, 2) has char-
acteristic roots 1, 1, 1, and 2. We say that{l)and 2 are its distinct
eharacteristic roots, and that these roots hawé multiplicities three and
one, respectively. In general, if (1} ig.%jﬁe characteristie polynomial
of 4, the mulliplicity of a root r is the*number of »; which are equal
to r. AN

In cage A (with r, ..., 7 4% Ws characteristic roots) is similar to
a diagonal matrix , %)
L™
@) PAP =D = diag (d, - - - ; &)y

the matrices A and?D’ have the same characteristic polynomial
I@) = @~1) - i@~ r) =l ~ D| = (¢~} -+ (¢~ d). Thus
the diagonal elenfents d,, . . ., d, must be the same as 71, . - ., 72 in
some order, Adence:

'LEMM&;gi 1. If a matriz A is similar to a diagonal matriz D, the

chm‘g{:ﬂeris{.ic roots of A are the diagonal elements of D.

By Lemma 8-3 the characteristic roots may be made to appear

on (the diagonal of 1 in any desired order by suitable choice of P
in (2),

If we write (2) as
AP=PD =P diag (ri, .- -+ Tohs
#d let P; denote the ith column of P . we find that

AP,‘ = T's?Pa'-
169
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Thus, multiplication of the vector P; on the left by A produces a
scalar multiple of P
If A is any squarc matrix and £ is a neneero column vector such that

A=t

for some scalar r, ¢ is called a characteristic vector of A covresponding
to r.  (Other names: proper vector, eigefvector.) - '

Clearly £ is any nontrivial solution of the homogeneous system of
linear equations, (A —rE=10, or cquivalently, (7 — 4} 0.
Such a gystem (Corollary 3-6) has a nontrivial solution i aud bnly if
[rI — A| = 0, thus if and only if » is a characteristic root o’r 4% Hence:

TreoreMm 9-1.  Let A be a-square motric and r a scq Em: Th en A has
a characteristic vector corresponding to v if and rmly if 7 is ¢ chor-

- acleristic root of A. In this case, moreover, Ihe‘iozahz y of charae-
teristic vectors of A corresponding fo r is the st of all nonzero vectors
in the null spuce of vI — 4. AN

Because of the final property in thig\theorem, the null space of
rf — A may be called the characténisfic vector space (elgenvector
space) of A corresponding to r. o) i

This chapter iz concerned s with matrices which are similar to
diagonal matrices. The drscussmn above is a first indication that
characteristic roots andswectors may play a prominent role in the
theory. We shall adhe\te to the terminology “null space of rI — 4,”
but the reader s uld ‘remember that, apart from the zero veetor,
this space considts of the characteristic vectors of A corresponding
to the root ¢, €2,

Throug 61:11; this chapter it will be understood that vectors are
written sgleolumns unless the contrary is indicated.

,(\
\1 For each of the follow ing matrices over ® find the charscteristic roots,
ﬁnd for cach root r find all characteristic vectors corresponding to r:

o) [ )

2. Prove that a square matrix 4 is nonsingular if and only if all charac-
teristie roots of A are nonzero (u) by use of determinants; (b) by use of
Theorem 3-18.

Exmroises

to be similar to a dmgona] matbrix mll now be developvd
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TepoREM 9 2. An n X n matriz A over § is similar o o diagonal
& malric if and only if the set of characteristie veclors of A includes a
blasts for V.(3).

éﬁ.ppose that &, ..., &, are characteristic veetors of 4 forming a
basis for V,(T)}, so that
(3 At = rifi = £ (t=1,...,7)
If Pig the mairix whose sth column is & (i=1, ..., ») and if D

denotes the matrix diag (ry, ..., ™), equation (3) is merely the
column-by-column statement of the equality O\
{4) AP = PD. O

That P is nonsingular follows from the linear independepcé'}of the
& Hence \\

6)] PAP =D,

Conversely, (5) leads through (4) to (3), so t-hat-’the\éolumns of P are
characteristic voctors of A, which because of t{m’%{ lnear independence
form a basis of V,(5). This completes the'proof of Theorem 9—2:

Another eriterion of the similarity of 3 to a diagonal matrix is
given in Exercise 8 of Scetion 8-8: alkélementary divisors of 4 must
be linear, This can casily be secns to be equivalent to the following
eriterion ; o™

Tasorra 9-3. 4 sguare ziiﬁs-ri:c A is similar {0 a diagonal matriz
if and only if the mingma: polynomial of A factors info a product of
distinet Linear Ffactorss “

We shall give hfg‘\ther proof of this theorem. If the rqinimum
p_OIYnomia.l has #h@'property stated, all of the elementary divisors are
lincar, and Tl%olﬂém 8-9 gives a diagonal matrix similar to 4. Con-
versely, if ANs similar to D = diag (r, - . -, 7), A and D have the
Same mimthum polynomial m(x), and it suffices to diseuss D.  Let

(6)\} 81,...,86

denote the distinet quantities in the list m, . .., 7» of characteristic
‘0ots of D. Then each r; is equal to one and only one s;. The
Polynomial

@ plE)=(x—s8) -+ (z— %)

bas the factorization property described in Theorem 9-3 and the
Property that plry=0,i=1,...,n
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If, for example, the r; are 1,1, 1, —1, 3, 3, then

p(r) = (& — Dz + D - 3).
In general, since every p(r;) = 0, we have
p(D) = diag [p(r), ..., p(r)] =0,

whenee (Theorem 8-2) m{z) divides p(z). The very definition of
p(x) implies that it divides m(z). It follows that m{x) = p(z) and
the latter by eonstruction is a produet of distinet, linear faetorg\

This gives a construction for the minimum polvnomml of A4 .11 Perms
of the characteristic roots, provided it is known that A h\a)rmlar to

£

a diagonal matrix. \J

-iVﬂEMMA 9-2, Let m, ..., 1 be characleristic urf&ms’ af A corres
- w;{b sponding to distinct characteristic rools 51, . . . sm\respccfebd y. Then
| \ Ty o v e, e are linearly independend.

D
am+ -+ 3-1‘112};\00

N\

for certain scalars a. Repeated nfultiplication on the left by A
then gives _ .:.’::3“

i 'tg‘:’::”' + am = [,

G111 "Jf"‘;‘ st amese =0,

aml&ﬁ\ 4+ tamst =0,

.\‘

‘\\

/ G;?};Sr 1+ C am;&f’ =10,

.'\,

Suppose that

This ‘-:V‘-:T,E'\I'(l\()f f equations may be written in the following compact
fmhm;%{:rwhlch the vectors am; appear as columns of a larger matris;

W\
(.8,%‘{’ (am, ..., am)S = 0,
\\’ 1 s ... 8t
S =
1 s, sF... 8¢t

Since S is a Vandermonde matrix with distinet s;, it is nonsingulat
(Exercise 8, Scction 4-7). Multiplication of (8) on Lhe right by
S gives

{am, . .., eq) =0,
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whenee each enlumn em; = 0. The characteristic vectors ; arc not
gero, 80 every «; must be zero. This establishes the independence of
the 5;.
TerorEM $-i. A square matriz A is similar {0 o diagonal matriz
if and only if for cach characteristic voot v of A, the mulliplicity of
r equals the dimension of the null space of rf — A.

Before progeeding to the proof we may reinterpret the latter
property: if .1 i similar to a diagonal matrix, the multiplicity of r
equals the maximum number of lincarly independent characteristic
veetors of A corresponding to r. (NN

For proof let P-L4P = D = diag (r, . . . , 7), where exactly k ¢'the
riarc equal to r. Then rI — D has precisely k zeros on the diggonal,
hence has rank n — %, whence {Theorem 3-9) the nulPspace of
rl = D has dimension n — (n — k) = k. Since .“’}\\

i — A = P{rl — D)P, O
rl — A has the same rank n — & and nullity & asi'r{ 2D. To prove the
converse, lot s, . .., s, denote the distinet)characteristic roots of A,
with m; both as the multiplicity of s; az’ld ‘the dimension of the null
space N of s;/ — A (s =1,...,4. Thew'n=m+ - +my, where
AisnXn. Tf we choose a basts 0N '
® B -y Eim
of the space N, (¢ = 1,..., ;};"a)l of the £;;form a set of n vectorswhich,
as we shall show, constitdtowa basis for Va(5). If
o Dags =0,
O\ s
we may first, cqxq‘l:}(ie those terms belonging to a common null space
Nito Obtuin,iﬁﬁqua.t.ion of the form

(10) N Mmoot =0, m= Eaﬁfii’
AN <
whee ghch ; belongs to N:.  Hence each #: is either 0 or a character-

istic vector of A corresponding to si. The latter property is un-
tenable, since then Lemma 9-2 would assert the independence of

the o, contrary to (10). Thus each
5= 0= aufip
y

and the independence of the basis vectors (9) implies that every
% =0. This proves the independence of the sct of n veetors &;,
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which thus form a basis of V,(5) consisting of characteristic vectors
of A. Then A is similar to a diagonal matrix by virtiue of Theorem
9-2.
EXERCISES
1. Bhow how to prove Theorcm 9-3 by means of Exercize 8, Scetion 8-8,
2. Find the characteristic roots of each of the following matrices over &
and for sach root a characteristic vector.  Follow the proof of Theorem 9-2
to construct a matrix P such that P71AP is diagonal.
I 2 12 O
A_[z 1:| A‘[‘s 0]' N
3. Find the minimum polynomial of cach of the matrices j!\ﬁY’BT(ISS 2,

and verify Theorem 93 in these Instances. 3

4. Let A be similar to a diagonal matrix and let g(x) ] be zm\ podynomial.
Prove that g(A) is similar to a diagonal matrix.

5. If the characteristic polynomial of 4 is a proa\-b of distinet, linear
factors, prove that A is similar to 3 diagonal masgix® Is the converse true?

6. If A is idempotent and has rank r, provp\}vrthout using the canonieal
matrices of Chapter 8 that A is similar to the Hiagonal matrix

1, 0]‘:.'x
oo

Henee prove that two n X n 1dempotent matrices over the same ficld are
Emmlar if and only if they have’the same rank.

. {a) Use the proof of Theorem 9-3 to formulate a construetion for the
minimu_m pnlynmnial of, ,& from its list of characteristic roots, provided it
iz known that A is ilu,l‘ to a diagonal matrix. (b) Give an cxample of
a matrix with cha.rg(’ ristic roots 1, 2, 2 whose minimnum polynomial is not
(z — I){x — 2).,

8. Let A he Mangular, that is, a square matrix in whieh every element
above the di?xgond,l is zero. Prove that A is similar to a diagonal matrix if
the dingdnal“elements of 4 are distinet.

9. IMA is similar to a diagonal matrix, prove that its transpose also has
thw propcrty

~9 -3 Decomposition into principal idempotents. Diagonal mat-
rices are very easy to manipulate algebraically. Perhaps the best
support for this assertion lies in the fact, already used several times,
that if p(x) is any polynomial and if D = diag (ry, .. ., ra), then

p(D) = diag [p(ry), - . ., p(ra)}.

A matrix A which is similar to & diagonal matrix enjoys much of
this simplieity when 4 is viewed appropriately. The next result sets
forth this viewpoing,
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TaponrkM 9-5.  Let A De an n X n mafriz whose distinet characleris-
He roofs are s, ..., 8. Then, A i similor to o diagonal matriz
if and onfy +f there exist matrices By, .. . E, such thal:

(a) A ==sf+ -+ 8,5,

(b} each I:; is idempotent (BEf = BE.J);
{e) £, =045 j;

(d) v+ -+ Ei=1,

Moreover,
() the wlrices E; are uniquely determined by A and properties
(a), (b), (). and (d); Oy

(1) each £, has rank equal to the multiplicily of the chamcte{?lsiic’
root si; _ ~\
(8) 4 p(x) is any polynomial, p(A) = p(s)Ey+ - Hrpls By
(h) any gizen matriz B commules with A if and gudy i B com-
mutes with ercery E; v
If m; denotes the multiplicity of s;, 4 is similp;rj%"
(1 PIAP = diag (5Tm, - . - 55T0). |
To put this equation in a form more conygﬂicﬁt for present purposes,
let D; denote an n X n diagonal matrix obtainable from the right
*flde of (11) by nse of 1 in place of &and 0 in place of s; for every
J# 1. Then N '
I = Dl—}:’\"" ; +1-)h
P-igp = &1] i‘T}:‘ R S stDtj
A = s BP2+ - + 8 PDPTL
U wedefine E; — PD,BMi = 1,. .., 1), we have (a). Moreover, since
Di=D; and D,D; <0 hen i # j, it follows that
\P@= PDPPDP = PD:P = By, o
R .Egbrj = PD{})J'P_]' = 01 (?' * J)
LS+ Bo= Py + -+ + DYP = PIPT = 1.
Thus'fh);":(c), and {d) are established. i
efore proceeding to the converse, we note that properties (f}
and (g) may he easﬂy proved. Since D; has rank mi, the same 18
brue for the similar matrix F,, which is the assertion in (f). To get
Property (g) the reader may use (a), (b}, and (c) to make computa-
Hous like the follgwing:

A2 = (3 E 4+ - - + s E) (sl + - + sk
= 2 sillss;E n 23§E§ = ES%E‘
1, £ ¢



176 CHARACTERISTIC ROOTS fomar. y

and, more generally,
(12) Ar = D B

If
plx) =az + < + ok + o,

we form p(4) by multiplying (12) by ax (¢ = 1, . .., r) and adding the
resulting r equations together with the equation

aUI=auE’1—i— "'+auE,¢. O :

This gives property (g). (N

To prove the converse part of Theorem 9-5 it suffices fo) bhO“ that
the minimum polynomial m(z) of A factors into a pradttet of distinet,
linear factors, This in turn will be true if we fild a polynomial
p(z} which factors into distinet, linear factors dnict has the property
that p(4) = 0. (Why does this suffice?) Deﬁne

pa) = =) -+ @2a0.
Since the s; are distinet, it remmns oniy to show that p(d) =
But every p(s;) = 0 and N

p(4) = pls:) Ly B pls)E =0,
The proof of the converse is eomplete
It remains only to prove (e} and (h). For (e) let
'\i’-f‘f =sfi+ o+ sy,
where F, 4 - + F; =1, Fi=F;and FFl; =0if 1 # 7. First note
that R4
xo\’...E.:A = AF = 8F;, Fid =AF;=3F;

\v

Thus \w;
“.f’\ E‘(AF,) = E,’S,’F,' = (E;A)F, = SiEiFj;

LA (s — s)EF; =0, _
EF;=0. (4 # )
\Fhls fact permits the following computation:
E:=EJd=E{ZF) = EF;
= (ZE)F;=IF;=F,
The uniqueness property (e) is thus estzblished. The - matrices
E\, ..., Ey uniquely determined by A, are called the principal
idempotents of 4.
It remains to prove (h). If B commutes with each E;, it certainly
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commutes with A by property (a). If, conversely, B commutes with
4 it must commute with every polynomial in A, The proof of (h)
will then be complete if we show that each E; 1s in fact a polynomial
in A. ‘
Let pEy=(x—8) - (& —s)

and let pi{z) = ple)/(x — &i).

Thus pix) 15 & polynomial of degree ¢ — 1 whose roots are those &;
with § = 4. Then

pid) = pds)Er + - - + pils) B A
= pi(si) £ K, \2)
Since ' . \
i = pil(si) ' R N

i a nonzero sealar, we may define the polynomial £ ¢

gi(z) = & 'pilx) \
which has the property ¢q:{4) = E;. This demiﬁﬁﬁl‘&tion that each
E:is u polynomial in 4 completes the proof;"\ - .

In certain studies the set of all charactéristic roots of A is known
as the “spectrum” of 4, and formulat(a) in Theorem 9-5 is ‘then
called the “spectral decomposition”tof A. The same result is also
known as the “decomposition of A;'in'to principal idempotents.”

We now have a variety of dfiteria for a matrix to be similar to a
diagonal matrix (such mattives are called diagonable), or, viewed
differently, we have a Nﬁ\iéty of properties of matrices which are
diagonable. In the set%ions ahead we shall study specialized types
of similarity which\ate of importance for real and complex matrices.
Several routes are dvailable for the journey through these theories.
The route tob{§6llowed here is marked out in large part by Theorems
%2 and 9—,@1\\"

N ExEncises
LoARsiver the question raised in the proof of the converse part of Theorem

2. Find the decomposition into prineipal idémpotents for the matrix
12
| =33} |
and verify properties (b), (e), and (d) of Theorem 9-5 for this matrix.

H Inner products. The pext few sections concern orthogonal
smilarity (defined in Section 9-5) and lead to a famous result
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(Theorem 9-11) about real, symmetric matrices.” In this section
the underlying concepts will be introduced.

The field &t of all real numbers will be the field of scalars now, If
£ and » belong to V,(®) a particular sealar will be associated with
them. Lot

g=col {ar, ..., a,), p=-col (b, ..., b
Then the scalar

(13) g=ab+ - + asds ~

is called the énner product of £ and 5. The inner product ,\{)E\E with

itself is a sum of squares: N\
gE=al+ - +al. A

S .‘~
It is here that the use of the real numbers as scglads begins tn have
influenece, for a sum of squarcs of real numberd\GHIs never zeyo unless

every a; = 0.
- o\

“Lexma 9-3. The inner product of asi{estor of V(M) with fiself is
positive unless the veclor is zero. .

Bince nonnegative real numbers "have square roots in the real
number system, we may speakvof the square root

(14) e,

which is taken alw ays LQ be nonnegatn @,

Dermvrrion 1. 2% any vector of V,(®) the length of £ is defined
by the formulal4] as the square root of the inner product of £and £.
A veetor is e;éil“ed normal if its length is unity.

DLFINITIBN 2. Twao vectors of V.(®) are said to he orthogonal to
each\chor if their Inner produet is zero.

These concepts of length and orthogonahty have the usuzl con-
’,\no‘tatlons when 7 = 2 or 3. Suppose that the vector {ay, az) of Va{®)
\ is interpreted as the line from the origin O to the point P, whose co-
ordinates in some rectangular coordinate system are g, and @z.  Then
the length of OF is (a} + a2)?. Moreover, if @ is the point (b1, bs),
0Q has slope be/by and OP hus slope a;/a,, on the assumption that &
and by are not zero. The familiar criterion for orthogonality of 0@

and OF is that the product of their slopes shall be —1;

be 0z

b ©
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This condition may be stated in the equivalent form b.a; = —bia,, or
as

by + azby = 0,
Thus for Va(®) orthogonality in the usual geometric sense is the same
ag orthogonalily in the sense of Definition 2. The same interpreta-
tion ean be muade for V().
Let P = (p:;;) be an n X n matrix and let & =col (21, ..., Za).
Then PE = 5 is a vector, col (3, . .., ¥n), 2and the equation
(15) n =Pt

¢S\
is called a fincor transformation of V,(®). Such transformations aré
studied in soise detail in the next chapter,  For the present it should
be noted thut, given P, the formula (15) associates with-gach vector
¢ of V,(6t) a well-defined vector  which is variously cailed the 7mage
or map or frangform of £

Derixition 3. A matrix P and the linear ®ransformation (1)
which P determines are both called Wf‘h@onaﬂ if (15) preserves
lengths, that is, "
9=y ’?3”
for every vector £ of Vu(®). | »
It is easy to characterize or t.hog(mﬂ] matrices P = (pi) in tcrms of
their elements.  For if Pi is. mthogoﬁfﬂ

(16) £t Ln = (PEyPg = ¢PPE.
Since this asserts thab he quadratic forms
N \
PAS X'Ix, X(PP)X
have the ms\"\ralues} Theorem 5-3 implies that
D 8 PpP=1,
. “hl(h \ equivalent to the statement, P’ =P Conversely, (17}
ligs (16}, so that (13) is length-preserving.

TuuorkM 9-6. A square mairiz P s orthogonal if and only if

P'= P-1 This 4s true, also, if and only if the columns Py of P are

mutuatly orthogonal, normal vectors:

pPP.=1, PPi=0 - G #3)

The first critorion in Theorem 96 was proved above. The sceond

is merely g, row-by-column interpretation of equation (17).
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Although a matrix P over an arbitrary field ¥ may be called orthog-
onal if it obeys (17), the bulk of the literature on orthogonal mairiees
is confined to the casc ¥ = ;.  We shall abide by the definition above,
whercehy it is always assumed that the scalars are real when s matrix
is called orthogonal.

Durivirion 4. A basis for a vector space over ®& is called ortho-
normal if it consists of vectors which are normal and mutualily orthog-
onal. Q)

Since an 7 X »n orthogonal matrix is nonsingular, its qumr{H form
& basis for V,(®). By Theovem $-6 this baais is orthonm\m The
unit vectors constitute an orthonormal basis,

".'.
{ %

Exzrerses

N

1. Prove that a matrix is orthogonal if and only3{ R ¢ rows arc mutually
orthogonal, normal vectors, \
2. Show that every orthogonal matrix comm\}tes with its transpose.
%*3. Prove that a produet of orthogonal mahmes is always orthogenal.
%4, Prove that the inverse of an orthogbual matrix is orthogonal.
*5, If £ and n are orthogonal to each .other, show that the same ts true of
af and by for any sealars « and b. |
6. Let £ be a nonzero \«ectox cif 1ength e, Show that the vector ¢ ¥ is
normal. A

9-56 Orthogonal singil}xrity. If B = P714P, where P is orthogonal,
B is said to be orthédentlly similar to A (also: orthogonally congruent
or cquivalent). /Then B is simultaneously similar and congruent to
A, the sameynd@trix P functioning in both relations:

/- B=PAP=PAP, P1=P.
This I‘Bké.”ﬁ\l’(g)h of orthogonal similarity is elearly reflexive (4 = I7'41,
I—l‘f‘?“); and since a matrix is orthogonal if it is the inverse of an
or.thb'gonal matrix or the product of two orthogonal matrices, the
\ s:elatlon is also symmetric and transitive.

If A is symmetric, every matrix orthogonally similar to A iz sym-
metrie, since orthogonal similarity is also congruence. We shall ob-
tain a canonical set (Theorem 9-11) for real, symmetric matrices under
the relation of orthogonal similarity. Since the matrices jn this
canonical set will be diagonal, we now embark on a preliminary ex-
ploration, as in Theorem 9-2, of those matrices which are orthogonally
gimilar to diagonal matrices:

(18) PUAP=D=diag (n, ..., +n), P1=P"
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Suppose thal (18) helds, so that AP = PD. If P; denotes the

gth eolumn of | then "~
AP;=r Py

and Py, ... . /7, are characleristic vectors of 4.  As ohserved after

Definition 4, (hese veetors form an orthonormal basis for Vo{6).

Thus the validity of (18) implies that the characteristic vectors of 4

include an oribonormal basis for ¥Vo(®).

THEGREN 47, Lei A be an n X n malriz over @ Then A ig

orthogonally similar {o @ diagonal mairiz if and only if the sef of
characteristic vectors of A includes an orthonormel basis for Vo(&).
NS ©

It remains to prove the converse. Supposc that &, .. M. are

_ characteristic vectors of A forming an orthonormal basisifon V. (®):

AE; = v '"‘i‘zﬁ\: L..., ﬂ)

This implics that AP = PD, D = diag (r, ..., ¥y where P is the
matrix whose sth column is & (=1, ...,/m) Since the & are
mutuslly orthogonal normal vectors, P is gréhogonal (Theorem 9-6),
50 that O
PAP =D, RY=P.

Eggﬁ:i{érsms
*1. Bhow in detail that orthogfinal 'simﬂarit-y is an RET relation.

2. Let B = P14AP, wherg«R is orthogonal. Show that all orthogonal
matrices @ satisfying 1 Q\‘: B are given by § = RP, R varying over all
orthogonal matrices copmuting with A. '

3. Is a nonsingulgp,»real matrix P necessarily orthogonal if it obeys
PUAP = PPAP [ s0me matrix A7

*4 If the cq ui}ui’s of an orthogonal matrix are permuted in any way,
show that tlte'vekulting matrix is orthogonal.

5. Sho\‘i‘mxt the diagonal elements r; in the proof of Theorem 9-7 may
be In?’;dgj’ﬁ‘f} appear on the diagonal in any desired order. :

958 Orthonormal bases. The unit vectors of Va(®) form an
orthonormal basis. We shall prove that all nonzero stibspaces of
Va(®) have orthonormal bases. .
Since the coordinates of the unit vectors of V(&) lie in the_l'at-}onal
number field Gty these vectors may be called an orthonormal basis for
V). Subspaces of V,.(®y), however, do not always have bases
of this {ype. Clonsider, for example, the subspace 8 spanncd by
£=01, 1, 0,...,0). An arbitrary vector In S has the form v =

N\
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{c, ¢, 0,...,0), and the square of the length of v is 2c?, where ¢ is
rational. If this werc equal to 1 we should have
2e =1, 2= (L/e,

and 1/e would be a rational square root of 2. Since this is impossible,
S has no nermal vectors, and henee no orthonormal hasis,  Over the
real number field the situation is better, as wo shall see.

Lenms 4. If &, ..., & are mutually orthogonal nonzerc vectorg
of V.(®), they are linearly independent. R
Suppose that R )
a1€1 R a:E: = , % N
with snitable scalars @;. Sinee £, = 0 for i # j, ~,( R
0=g-0=Elah+ - + s>
=a(EF)+ -0+ ac(&s ) \
= a:£ifi. N
Since £; is assumed to be nonzevo, £ 18 n\féero Therelore a; =0
(i=1, , B and the set of £; is lmt,arly ‘independent.

TueoreM 9-8.  Every nonzero ﬂecﬁor space V over the real number
field has an orthonormal bagig™ Moreover, every set of mdually
orthogonal, normal vectors of W may be extended to an orthonormal
basis of V. " \

Let us take the sectknd stutement first, and let
(19) Bl ooy b Gz 1)

be a set of miuthaily orthogonal, normal vectors belonging to V.
(In case = 1\thls merely requires & to be a vector of length one.)
By the ] h\ma above, the number 1 is at most equal to the dimension
tof B, and the only vase in need. of consideration is that in which
1 <phS
E\Smce i < {, the subspace spanned by {19) is not all of V, so that
ere is a vector » not in this subspace. Therefore no vector £ of
the form

(20) f=g—mh— - —ak

can be zero. In (20) choose the sealars a; to be

(21 a; = En

for j=1, ..., i. Then (20), when multiplied on the left by &

becomes
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EE=En— D el
h=1

= £y — a;tit;

=im—a;=0
Thus all of the vectors (19) are orthogonal to £ and also to
Eipr= ¢, .
where ¢ is the length of £ The set (19) has thus been extended to.\
a set

51} reay E": E'H—l

RO
of mutually orthogonal, normal veetors of V. If ¢41 <~~£,\1‘he
process mayv be repeated, and the desired basis will be constructed
after finitely many repetitions.  To prove the first ~I§ar'ﬁ of - the
theorem we note that every nonzero vector space{l“possesses a
vector £ = 0, hence possesses a vector & whichsis/normal. = This
gives a sct {19) to which the process above, oz {hg second statement

in the theorem, may be applied. R

% 3
"

Exzrcisrg \J

1. Let ¥ be the subspace of Vﬂ(ﬂ)fsﬁz{nned by £=(1, 1, 1) and 5 =
(1,2, 3). Find two orthonormal bases for V, using the procedure in the
proofs above, Then extend each basis to an orthonermal basis for Va(®).

2. Let the colurans of an # X matrix A form an orthonormal basis for a
subspace V of V. (®). If Bg'is,\n X r, prove that the columns of B form an
orthonormal basis of ¥ if and only if B = AC, where Cisanr X r orthogonal
mutrix, N\

-7 Similari ’:o\f real, symmetric matrices. Most of the remain-
ing tools noeded for studying the orthogonal similarity of real, sym-
metrie ma«Q\i@és are developed in this section. Some of 1;1'19j results
are extetided to the larger class of matrices which are Hermitian, and
“'il,,l bexsed later when this class is studied relative to a suitable RST
fﬁ‘{a:t‘idn.

TrrormM 9-9. Al characteristic rools of o Hermition mairiz are

real,

Let- A bu t.he matrix ﬂ‘nd ]et r den{]te any one Uf ltS Chara.ﬁte_ristic
Toots, » being a complex number, There is then a nonzero vector £
over € such that

Af=rE, t=col {o, ..., ) #0
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If, as in Section 5-7, £ denotes the vector

E=col (7, ..., ),
we may multiply the equation above by ¥ to obtain
FAL =t

The left side of this equation is a value of a Hermitian form, hence by
Theorem 5-13 is a real number s.  For the same reason the expression
£t is a real number ¢, and ¢ cannot be zero:

t=5161+"'+5ncn>0.

Thus we have s = #£, so that r is the real number r = s/i. {(\J)
. o\
LumMa 9-5. Let vy and 1o be distinet characteristic roals’sf o matriz

A, and let £; be a characteristic vector of A correspondattgtor (i = 1,2).

Q!

Then if A is Hermitian, Ef: = 0. S
The proof is an application of the associdtive law and the faet,
just proved, that 7, and r; are real: PN

glAg) = gﬁz&) ’?’:@&)
= 546D
= (ffi?ﬁ‘f"z =" (5:52)-

(1"2 _rl)@’gﬂ = 0; E_’LE'A’- = 0;
gince hy assumption r, <% "is not zero.

This lemma may, belapplied to real, symmetric matrices A. Since
we saw in Theorez:n\ﬁ\-g that all characteristic roots of 4 are real, we
may take ® as.the scalar field so that & and & are real. Then, as
applied to this‘ease, Lemma 9-5 may be stated thus: Characteristic

 vectors correspinding to distinet roots of a real, symmelric matriz are
always‘a(thbgmal.

Asd esult of Theorem 9-9 the minimum polynomial, in fact every
Sjrr;ildrity invariant, of a resl, symmetric matrix 4 factors over &

“Tto linear factors. We shall see that the factors of the minimum
polynomial m(z} arc distinct. This is equivalent (Theorem 9-3) to
the property that A is similar to a diagonal matrix.

Thus

vLuvMa 9-6. Every real, symmelric mafriz s simlar fo a diagonal
matrex.

Using the notations 4 and m(z) above, we need only show that the

minimum polynomial m{z) has no repeated linear factors. Suppose
to the contrary that
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22) m(z) = {z — r)h(z).
Then h(z} nnd glx) = (x — r}h(z) have real coefficients, and
g(x)* = m(z}h(z), g(A) =m{d)h(4) = 0.
The matrix
S = g(4) = (s:)

is real and symmetric (why?) and is not zero, since g(x) has lower
degree than the minimum polynomial of A. The ¢th diagonal ele-

ment of 8% = g(A4) = 0 is N
(Si1, v vy Sin) - €01 (814, o o oy $ai) = 0, o'\:\
and sinee s;; = s;;, this element is O ’
St =0 Y

The reality of the s;; then mplies that every sy =j}k30 that 8 =0,
contrary to {act. Thus (22) is false and the proof\is’complete.

vinuorem §-10. Two real, symmeiric mg.tm% are similar if and
only if they have the same characteristicgools.

For proof we use the diagonal matlji}:c..D, which by Lemma 9-6 is
similar to the given matrix A. As\observed in Jemma 9-1, the
diagonal elements of D are the chatacteristic Toots 1y, ..., T» of 4,
and these may be made to appeé,'r' on the diagonal of D in any desired
order. If B is a real, symr&‘étric matrix having the same roots as 4,

it is similur to the same diagonal matrix D, hence to A. The converse
is trivial. D

N

¢ N ExERCISES
L. Bhow that\:th'e elementary divisors of a real, symmetric matrix are

linear, N .
2. By '\P%érem 9-10 determine which two of the following rea.

are stmilhry and write 2 diagonal matrix similar to both:

~O° —2/5 6/5 5/2 5/2], [1/2 3/2]-
N [ 6/5 7/5]’ [5/2 2] a2 12
¢ matrix 4 is the number of

matrices to which
is not equal to its

1 matrices

3. Show that the rank of a real, symmetri
monzero characteristic roots of A. Find a larger class of
this result can be cxtended. Find a mabrix whose rank
number of nongero characteristic roots. '

. 9-8 Orthogonal similarity of symmetric matrices. A..can:oni_cal_set
15 obtained now for symmetric matrices under orthogonal similarity.
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TuroneM 9-11. Every real, symmetric matriz A {is orlhogonally
similar to ¢ dingonal matriz (whose diagonal elements are necessorily
the characteristic roots of A).

Let s, . .., s denote the distinet characteristic roots of 4, and let
s; have multiplicity m; (=1, ..., %) s0
n=m+ -+

Since (Lemma 9-6) A is similar to a diagonal matrix, Theorem 9-4
comes into play: m; is the dimension of the null space N; of s:1 .
If we choose an orthonormal basis for cach N; these basiz yedtors
form g set of » vectors &, . . ., £ which may be seen to be, fm~é| rtho-
normal basis for V,(6t). For, they are normal and two, S Xhem be-
longing to the same N, are orthogonal. 1f two of thef bolong to N
and N;, respectively, with ¢ # 7, they are orthogonal'gince they corre-
spond to distinet characteristic roots (TLemma $38)3" Thus &, .. ., &
form an orthonormal basis for V,.(®) congisting of characteristic
vectors of 4, and this proves the theorem &y virtue of the eriterion
in Theorem 9-7. $ ,\
If we order the r;, all real numbors by Theorem 9-9, so that

1 E T ;é’ 8, = Ty

there would then be a unique dlagonal matrix similar to each given
real, symmetric matrix. In ‘ther words, we have found a canonical
set for real, symetﬁ(:.mtrlces under orthogonal similarity.

The reader woul J{I@ ‘well to learn the proof of Theorem 9-11.
The same geneml direction will be followed later in this chapter
when Hprmitlam matrices are studied and, with some modifications,
when norma,{matnces are studied.

TurorkM 9-12. Twe real, symmetric malrices are orthogonally
simdlgr if and only if they have the same characteristic roots, hence,
Jifand only if they are similar.

<\‘;The proof is left to the reader.

ExErcises
1. Prove Thecrcm 9-12.
9. Tf A, and A, denote the first and last matrices, respectively, In Exercise
9, Section 9-7, find orthogonal matrices P; such that £74:P; is diagonal,
{ = 1,2. Then find an orthogonal matrix ¢ such that QAR = A
3. Prove that the real, symmetric matrices arc the only real matrices
which are otthogonally similar to diagonal matrices.
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9-9 Pairs of quadratic forms. One of the interesting snd useful
applications ol orthogonal similarity is concerned with the simul-
taneous reduction of two quadratic forms in &y, ..., 2z, that is, a
simplification of both forms by the same substitution X = PY.
Stated in mairix form the result Is

TueorEY Y (3. Let A and B be n X n real, symmelric matrices,
A being positive definite.  Then there is a nonsingular, real matriz
R such thot :

O\
(23) R'AR=1I, R'BR=diag(r,...,Ts).
For any ehoice of B the quantities ry, . . ., T are necessarily th{:r‘@(?ts
of the polynomial equation, |vA — B| = 0. Dd

Theve is (Theorem 3-8) a nonsingular, real matrifgj(é such that
QAQ =1 Then ¢ =Q'BQ is a real, symmetri¢ matrix, whence
(Theorem 9-11) there is an orthogonal matrix £ sach’that

PCP = ding (r, ..., 1) = D, ,;3§\=‘ P
Then R = QP fulfills (23). Also \
R(xd — B)R:.@}r’i D.
But |R| = r > 0, where r is a real ;if{fn;bcr, and
eI = D| = [Rl2mfzd — B] = 7*- [v4 — B},
whence the roots ry, ...z;’}ﬂ of |zl — D[ =0 arc also the roots of
ltd — Bl = 0. N\

N

"</ EXLRCISES .

1. Find thq"{‘ééﬁ of the cquation JeA — Bl = 0, where A and B are the

real matrice\w’
' A=[1 1], B=[0 3].
,,.\:"\’f" 1 4 30

\2‘ \’ﬁ;iﬂg the results of Exercise 1, show that the real quadratic forms
f=al+ 2mz, + 4af, g =00
may be simultaneously reduced by a monsingular linear substitution fo
B+ yiand 2 — 343
3. Prove Theorem 9-11 as a corollary of Theorem 9-13.

P A - -1
4. If 4 and B are n X n matrices and 4 is nonsingular, show th&ti Jg
and BA1 have the sume characteristic roots. How are these roots relate

to the roats of lzd — B|?
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9-10 Inner products over €. Thetheory in Chapter 5 of congruent
symmetric matrices over the real number fickd had its counterpart
over {he complex number field in the theory of Ilermitely congruent
Hermitian matrices. Reecall that matrices B and A over € are
Hermitely congruent if there is a nonsingular complex matrix # such
that
(24) B=FAP.

The orthogonal similarity of real, symmetric matrices also hasts
counterpart over ©@: the unitary stmilarity of Hermivan mairlua
Any two matrices B and A over @ are called unilarily aamzlar\;’f\ (24)
holds with a matrix P such that O

(25) Pr=p

Note that a real matrix obeying (25) s orfhogonaT and that (24)
and (25) give an orthogonal similarity if all the. wiatrices concerncd
are real. N\

In order to study unitary similarity, we\b@gln by gencralizing the
concepts which were central in the stu‘dy of orthogonal similarity.
We shall extend the concepts of i 1nnel product, length, and or thog-
onality so that they apply to vectors in Va(@). As usual, Tet ¢
denote the complex con]uga,te e b of a complex number ¢ = « + bi.

DrrivimioN 5, If £= ,Qol (al, co., @) and n = col (by, ..., bn)

belong to V.(€), the grrer product of £ with 7 is defined to be
¥ = @b+ - + dnbo

Warning: Unlikednner products of real veetors, the inner product

7'E of 7 with £45, ot the same as that of £ with 4. The two are com-~

plex con]ug,gt
7E= b + - +bnaﬂ—5n

If’c,‘-,= a+ b, the product of ¢ with its conjugate & = @ — bt is
~O éc= a4 b
}lence is a positive real number if ¢ » 0. It follows that the inner
product
Fe= 4 -« + @i
of ¢ with itself is positive if £ » 0, and is zero if £= 0.
DeriNITION 6. If £ is in V,(€), the length of ¢ is the nonnegative
square root

Fk.
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A veetor ig ealled normal if its length is unity.

If & = 0, we find on taking the conjugate transpose that 7'& = 0.
This clears the puth for the concept of orthogonality in V,.(@),

Derixrrios 7. Two vectors in V,.(@) are called orthogonal if their

inner product (in either order} is zero,

Each # X n matrix A over € determines a linear transformation
(26) 7= Af ‘
of V.(@) in which cach vector § iz “transformed” into the mow
vector (26). R\ \)
DErINITION 8, An 7 X # matrix A over @ is called u@@@gr}) if the
lincar transformation (26) determined by A4 preserveslengths:

- £ &
@)t = @9 O
for every vector £ of V,(@). The linear t-ranes{urmation (26) is also
called uniiary in this ease. \\

Since DAY

7 = (AE)(48) = FA'AE,

it follows as in the proof of Theorgm\d=6 that 4 is unitary if and oply
if 4’4 =1 This equation azdhits row-by-column interpretation
give ~ '

‘THEOREM O-14. A4.s ’LZa?e matriz A over € s unitary if ond only
i A= AL Thig ??s\{tme, alse, if and only if the columns A; of
4 are mutually gsthogonal, normal vectors:
JO7 A=, AA=0 (G # )
Just as N\the real case, orthogonality implies linear independence.
N\ _ |
LeawdY 7. If &, ..., & are mutually orthogonal, nonzera vectors
A VSLe), they are linearly independent. -
“The proof proceeds exactly as for Lemma 9-4, conj ugate t12
poses Wele used in the earlier case.
DErixtrioN 9. A normal unitary bosis of V.(€) is a basis consisting
of vectors which are normal and mutually orthogonal.
Thus a matrix is unitary if and only if its cohrlmns .form a n(_)‘l“maé
Wiitary basis for V.(@). Onc such basis for T n(_e) is the baﬁls >
Wit veetors, Every subspace also has such a basls, as we shall see.

ANIPOSES

Bow being employed whore trans
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TaeoreM 9-15. Bvery nonzero vector space V over © has a normal
unitary basis. Every set of mulually orthogonal, normal veclors of
V may be extended to a normal unitary basis of V.

The proof is completely parallel to that of Theorem 9-8 and its
corollary. Details are left as an cxercise.

TueoreM 9-16. An n X n matriz A over G is undlarily sinalar to
a diagonal matriz if and only if there is a normal unitary basis of
Va(@) consisting of characteristic vectors of A. N

The proof is almost word for word the same as that for "THeprem

9-7. The matrix P such that AP = diag (ry, .. ., r.) Has'for its
columns the characteristic vectors described in Theoreng~£};16. This
matrix P is unitary. , \

Exarcmses \

*1. Show that unitary similarity is an RST relatisn.
x2, If A is unitary, prove that every matr'{é;ﬁnitarﬂy similar to A is

unitary. N\
3. If A is Hermitian, show that every({mafrix unitarily similar to Als
Hermitian. N\

*4. Tf A is unitary and ¢ = |4/, prove that a2 = 1 and A, 4’, and 4
are unitary. X };‘ :
*5. If a vector § is orthogonal to%each of the vectors au, . . .+ , an, Show that
8 is orthogunal to every lings.'{‘ combination of @, .., G
6. Prove Lemma 97,8
7. Prove Theorem 9\1\5
8. Prove Theorgm $-16.
9. Prove thapatproduct of unitary matrices is always unitary.
10. If the ct)’ﬁlmns of a unitary matrix are permuted in any way, show
that the resltifig matrix is unitary.
11. Shw'that the diagonal elements of the matrix in Theorem 9-16 may
be madeito appear on the diagonal in any desired order.
. J8)Let B = PAP, where P is unitary. Show that all unitary matrices
‘Q\c;beying QLAQ = B are given by @ = RP, where R varies over all unitary
matrices commuting with 4.

9-11 Unitary similarity of Hermitian matrices, We are now pre-
pared to follow a path entirely parallel to that which led through
Sections 9-7 and 9-8 to Theorem 9-11. The present path is associated
with the scalar field @ instead of ® and leads to Theorem 9-17. De-
tails of proof in most cases are left as exercises, since the proofs al-
ready given for the real case require only slight modification.
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LevMa G- 8. fvery Hermition matriz 4 is similar to o diagonal
mairiz (whose diagonal elemenis are necessarily the characleristic
roots of A4).

Since (Theorem 9-9) the characteristic toots of A-are real, the
minimum polynomial of 4 has real coefficients. With this start we
may easily paraphrase the proof of Lemma 9-6 so that it proves
Lemma 8-8,

Treorex $5-17.  Every Hermitian mairiz A 1s unglardy similar fof

e diagone! mutriz (whose diagonal elements are necessartly the char-

acteristic rools of A). K\ \J

The proof, parallel to that of Theorem 9-11, is left to the reader.

Initary simiinrity is an RST relation, and the famougfresult just

stated amounts Lo the determination of a canonical sgtk@f’ Hermitian
matrices relative to this relation. Theorem 3-12:ahdlits proof may
likewige be paralleled: N

THEOREM O 18. Two Hermitian mairices are unilardly similar if

and only if they have the same characteristic roots; also, if and only _

if they are similar, N X

Minor changes in the proof of Thgiaafem 9-13 lead to

THRORENM 0-19. Let A and B Be n X 1 Hermitian matrices, A being
positive definite. Then thére is  nonsingulor matriz B over € such
that TO
R'AR=%" R'BR = diag (r, .. -, 7=)-

For any choice of Rothe quantities i, - . . , Tn are necessarily the roots

of the Poﬁiﬂo?,?’t\ﬁ@l'\equa.téon fcd — B = 0.

\\“\ EXERCISES

1. Intefj;:)ret- Theorem 9-17 for Hermitian forms.

%I‘ Waite detailed proofs of (2) Lemma 9-8, (b} Theo
O =19,

9-12 Normal matrices. Those matrices over a general field & ;Thi(.}h
are similar to diagonal matrices have been characterized fully in

Seetion 9-2. Those real matrices which are orthogorllally gimilar
tric matrices (why?).

he field of scalars, we
iagonal matrices.
(Theorem 2-17),

rem 9-18, (c) The-

Contemp]ating the complex number ﬁeld_ as t
ROW inquire which matrices are unitarily similar to
This class of matrices includes all Hermitian matrices
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and a natural suggestion is that the class includes nothing but Iler-
mitian matrices. Actually, as we shall see (Theorems 9-21, $-23),
there are many other matrices which are unitarily similar to diagonal
matrices. We shall find & simple eharacterization of all of them.

DerFintTion 10. A complex, square matrix A is called normol if it

commutes with its conjugate transpose: A4’ = A’A.

Suppose that

PAP=D=diag (ry, ..., 1s), P1=P". X
Then, taking conjugate transposes, we find that PR ~
PAP=D =D=diag sy ..., 7). ~\°
Since DD = DD, it follows that \\

PAP . PP = PA'P . PRARD
PPAA'P = PIIA'AP, Y,
s0 that Adr=T'A. \
This proves N\

Lemma 9-9. If A 4s unitarily simfﬂ"ar to a diagonal matrix, it is

normal. . NY

In proving the converse of thi8 lemma we shall follow a path like
that in the orthogonal redugtion of real, symmetric matrices and in
its Hermitian analogtc.<~0bserve first that if A is normal, so i8
A — rI for any complex number r.

Lemma 9-10. If o is normal and § is a characteristic veclor of A
corresponding,bo’r, then it also is a characteristic vector of A corre-
sponding t6° 7
Let B&Y — rI 5o that BB’ = B’B. Then Bt = 0 and
N\:.\':,o 0= (ff_éf)’(BE)f?ErB«f= (é’;B)(BrE)
} =7, »=BL
Sinece the inner product.of a vector with itself is zero only if the vector
is ero, it follows that 4 = 0,
Be=0=(A"-7t, At=7&

This result makes it possible to prove a generalization of Lemma

9-5:
LN
TuroreM 9-20. If A is normal, characieristic vectors of A corre-

sponding to distinet characteristic rovis are orthogonal.
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We have r, # m and
At = rigi (i=1,2)
Then A’ = A& (Lemma 9-10), so that
BAs) =nfs
@A = Tt
= (") 'k = néh,
(T"l - ?'2) (E;&) = Or E;& = 0) . E 2\,

since r1 — 72 15 not zero.

1l

.\:\’
Lemma 9-11. [f 7 4s @ characteristic rool of multiplicity & Qbﬂ ’
- normel matric A, the null space of rI — A has dimension J'c\‘ :

" This result ic a erucial step towards the canonieal Eé\{"-“" It will
follow as soon as we show that A4 is similar to a diaiohal matrix,
and this in {urn: will follow from the fact, now to he proved, that
the minimum polynemial m(z) of A has no rfgéa)ted factor. Sup-
Pose, to the contrary, that PAY
mx) = (x — r)*h(z) = @\~ 7)g(%)
80 N\
9(7) = (& = hle), gd) = (4~ rDHA),

m(d) =0 = (4 —rhg(d), g(4)#0

Since g{A) is a nonzero matriXthere is a vector 1 such that
RN

erp S §A)n = =0,
This vector ¢ is actudlly a characteristic vector of 4 corresponding
to 7, as the following-tomputation shows:

‘Q{:\#}I)g = (4 — rDg(A)n = m(A)n = 0.

By Lemmg..g;lo’
~O (A’ — fDg=0.
Conjkafte transposes in this equation give
¥4 —-rD)=0, -
Vg = Fg(dyn = P4~ DA
— 0. h(A) = 0.

(27) establishes the lemma.

Thus ¥t = 050 = 0. This conflict with
sult on normal

With this lemma we are able to prove the main re
Matriceg,
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TaEoREM 9-21. A compler mairiz is unilarily similar to a di-
agonal matriz if and only if it is normal.

As in the case of corresponding results for real, symmetric matrices
and for Termitian matrices, we consider the distinet characteristic
roots s, ..., s of the normal matrix 4, and the null space N of
sd —A4 (=1, ...,. By the lemma just proved, the dimension
ni; of N is the multiplicity of &;, so

n=m+ -+ O

Let &, ..., £ be the veetors obtained by putting togéther any
chosen normal unitary bases for Ny, Na, ..., Nu 'lh(‘ﬁ £ and £
are orthogonal if they belong to the same N, and algowif they belong
to different null spaces N, and Ny, by Theorem @320, Ilence the

normal vectors &, ..., & are mutually ort-h(i@nal, thus linearly
independent (Lemma 9-7), and so form a nOrmal unitary basis for
Vale). INY

Since the normal unitary basis obtaihed in this way consists of
characteristic vectors of A, Theoren{ %16 implics that every normal
matrix is unitarily similar to a diagonal matrix. No other matrices

have this property, by Lemma:g.;g, and the proof is complote.

CoroLrary 9-21. If. A Vs normal, s principal ddempotents
Ey ..., . (see Thedgem 9-5) are Hermitian. Conversely, if A 18
a dingonable co@sx’ matriz whose principal idempotents are all
Hermitian, A is normal.
On (:xamipilig’ the proof of Theorem 9-5 and using the fact that
P is now phitary, we find that E; = PD:P~" is Hermitian. Con-
\rerselx\:it}the E; are all Hermitian,
O
N 4_’1=81E1+“'+8£:,
O A =8E+ - + 58,
\ é(\) A.‘EF = 81§1E1 —’r' =+ ‘J[' SgggEg = fi’A ﬂ.nd 11 s normal.
The diagona! elements obtained in Theorem 9-21 must be the

characteristic roots of the given normal matrix. This gives the fol-
lowing parallel of Theorems 9-12 and 9-18.

TurorEM 9-22. Two normal mairices are unifarily similor if and
only if they have the same characteristic roots.

The class of normal matrices includes a wide variety.
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“-

Turorem 9 23, Al mairices af the following types arc normal:

Hermitian, shew-Hermitian, real symmetrie, real skew, unitory,

orthogonal, divgond, and alf matrices unitoridy similar o normal

malrices.

The routine verification is left to the reader. A few warnings eon-
ceming the abiove theorems are in order. First, there are matrices
which are novmaul but do not belong to any of the types in Theorem
0-23 {except 1lie ull-inclusive last type). For example,

A=|: 0 1+z]' §
1412 ’\‘\

Second, if Theosem 9-21 is applied to a normal, real matrix, the
unitary similarit ¢ does not necessarily become an orthogonal, s-lml-
larity. Tn faci a real skew matrix = 0 is by the last twe) I‘t’-‘SU-ltS
unitarily similic to a diagonal matrix. But it is not or‘t‘hégonally
similar to a i wmml matrix, sinee this property is enjoyed by a real
matrix 4 only if A is symmetric. N

ExErCISES s \

1. Prove that o 2 X 2 complex matrix

¢ a .’f’:"
b 0 fey®

with zero diagonal is normal if and only'# a& = bb.
2. Prove that every 2 X 2 comﬂh‘c matrix of the form

S

3. “how how the pmof of Theorem 9-21 employs Lemma 9-11.

*4. For every mt{gm £ > 0 and every normal matrix A show that there
i 2 normal matii¢ B such that B bas the same rank as 4 and B* = 4.
Hmt UQ@ T}ILOJ'H 9_21

*5, Let Awbg*a real, symmetric matrix w
Show thatfr every integer & > 0 there is a real, positive
ma.tmx@ o the same rank as A such that B* = 4.

6. Prove Theorem 9-23,
7 Prove that every normal matrix is similar
8. 8how that two normal matrices are unitar
are similay,
9. I 4 is normal, show that A% and A’ always have the
10. If 4 is normal and g(x) is any polynomial over G, prove
Normg),

11 It 4 is normal and nonsingular, pro

hich is positive semldef'mlte
semidefinite

to its transpose.
Jy similar if and only if they

same length.
that g(4) is

ve that 4~ is normal.
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9-13 Characteristic roots of certain normal matrices. Various
types of normal matrices are easily distinguished by their characteris-
tic roots, as indicated in Theorem 9-25.

TuwoneM §-24,  [f A 15 unitary, its characteristic rools have abso-
Tute value one. [f A is shew-Hermilion, ils nonzero characteristic
TOOls are pure IMAGINAries.

Tn each case let £ be a nonzero characteristic veetor corresponding
tor: Q
i At =L ) \:\.
If A igunitary, 4'4 = I, so that N
= A'AE=rA'E = rfE N
by Lemma 9-10. Then D
(1—rME=0, §£#0, s

Thus the absolute value (rr‘-)_’}‘ of 7 is 1, \\
If 4 is skew-Hermitian, 4’ = —A \‘

FAc=rt (O
- PAEANAD
| =%
(5 = —#§%), 520, 7=-r

The last equation shows\that r is a pure imaginary complex number
+8 )

if 1t iz nonzero. ¢ N\l
Tueorem 9-25y Let 4 be a normal matriz with character isiic rools
Thoe e, Tan CThen each of the following properlies (j) of A is equivar
lent to Ik&property (47) of the characteristic rools {(§ = &, b, ¢, d, &, f):
(5{ A“s Hermittan; (a’) every vy 1s real;
A s posttive definite; (b') every vy s real and > 0;
{c) A is positive semidefinite; () every r; is veal and Z 03
j“.: (dy A is nonsingular; (d') every r; = 0;
© (&) A is undtary; (&) every r: has || = 1;
(f) A is skew-Hermitian; (') every nonzero r; 1s a pure ¥maginary.

In every case

PAP =D = diag (ry, . .., Tn)
= P-1AP, P-'=P.

Then (d) implies (d) by preservalion of rank. That (e) and (f)
imply (') and (f'), respectively, is asserted in the previous theorem.
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Conversely, if {d") holds, I is nonsingular, whence so is 4 = PDP-,
Ii all r; have absolute value 1,

P = 1, ‘.-",'_1 = ‘.F,',
50 that D1 = ) = I, D is unitary, and so is the unitarily similar
matrix 4. If {{") holds, £ 15 skew-Hermitian, and so is every matrix
Tlermitely cougruent to it, including 4. The first three of the six
results above are left as exercises.

A property of positive definite Hermitian matrices was given in the
second part of Theorem 5-18, In Theorem 9-26 we shall prove the
converse of this property. .\:\

. NS

Lemva 9-12. If A 4s any square malriz, the polynomigl\g(z)

2N

= |4 — af| hay the form S\ 3
@) gl) = (2 can(ma) i e o)

where ¢ s the sum of all principal subdeterminapts of |A] hoving

n—krows (k=0,1,...,n— 1) ’:"\\‘

Each term involving z* in the expansion) o’.f}fl — zI| is found by
selecting k dlagonul elements g — 1, say 2 Jly v e vy Jhy and taking
from the product, N\

N .
11 (o= 2),
i=gy

only the term in #*, namely (™™

\ \(lx)" = (—Dk"

The remaining » —¥§4cfors must be chosen in arbitrary fashion from
Tows and eolumpg'ndt yet used, that is, from the principal subde-
terminant, ||, ¢bfsined by crossing out the rows and columns num-
bered i “§; Since we want a term in z¥, we must choose t}fle
constant iﬁi}m from |S|. This is equivalent to replacing x by ¢ in
18], and yields the principal subdeterminant of A resulting fr:om

“léioR of the rows and columns numbered ji, - . - Ji  All possible
ter{ns in (~z)* are found by choosing ji, - - « » jo in all possible ways.
This gives the lemma.

r}‘HEOREM 9-26. Let A be Hermitian. Then A is positive definite
4 and only if |A| and all principal subdeterminants of A are posite.

The Necessity of this condition is asserted in Theorem 5-18. Con-

Versely, if |4 and all principal subdeterminants are positive, all the
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¢ In (28} are positive, so that g(—=z) is a polynomial in = with no

variation in the signs of its coefficients. By Descartes’ rule® of

signs g¢{x) has no negalive roots. It has ne zero vools, since
= jA| > 0. Therefore every real root is positive. But

F@) = ol — 4] = (~11l4 —&l| = (~1yy(),

and the roots of g(z) are the characteristic roots of A, which are
known to be real. Since we have just proved that lhey are not
zero or negative, all the roots are positive, and Theorem 9 25 implies
that A is positive definite.

‘<O
ExERCISES 7\ ¢

1. Prove the first three parts of Theorem 9-25, PAY '

2. Prove that a normal matrix 4 is idempotent if al}d}E}nlf il each of its
characteristic roots is zero or unity. Find a nonidgm}qc}tent matrix whose
characteristic roots are 1, 1, 0. 4

3. Determine which of the following Hermn‘{lan matrices are positive

definite: ¢ ;,

12 L& >0
|:2 3], -t (2 1+v)
082 =-7 3
4. Prove that ¢f + A is nonsjn’gvdl:él‘ if
{2} A isskew-Hermitian a11d~cf 15 ahy complex number which is not a pure
Imaginary;
(b) A is IHermitian ‘ug"i}‘b any imaginary complex number;
(c) A is positive Se@tdehmte and ¢ is either imaginary or a4 real positive
number;
(d) 4 is umta(ry and ¢ is any complex number whose absolute value &
different frouxqmty
5. In Exéfcise 4, Section 9-12, show that B is necessarily unitary if 4 s
unita-ry{s;nd that B can be chosen to be positive semidefinite if A has this
property.

)
“\'9-14 Normal, real matrices. If A4 is normal, there is a unitary
“matrix I, not unique, such that
(29) UtAL = diag (11, . .., 74),

where the 7, are the characteristic roots of A, This theorem provides
a canenical st of normal matrices under unitary similarity. When 4

* Sec any fext in College Algebra or Theory of Equations, in particular
Refercnce 16.
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i real ag well s normal, it is natural to consider what happens if the
unitary matrix {7 is restricted to being real, hence orthogonal. We
shall find & eanonical set of normal, real matrices relative fo orthog-
onal similarity.  We cannot expect to find diagonal matrices as in
{29), since umder present assumptions the left side of (29) is real,
whereas some of the chara teristic roots r; may be imaginary. If 4
is real and skew, for exw.mple, it is normal, but all of its nongero
characteristic roots are imaginary.

Binee A ig real, itx characteristic polynomial f{z) has real coefficients,

imaginaries )

. &
(30} a; % bga. (J=1Laxm)
We shall shew that . { is orthogonally similar to a modiﬁp@t.ion"of the
diagonal matrix (29), in which each pair of conjugate imdgitiaries (30)
18 replaced by ihe diagonal block

a\,/
(1% _bj ’:.\
(31) ¢, =[ r ] &

bj il

TrarorEM 9-27. Let A be a normal, real matriz whose nonreal
o o 4

characteristic rools are the imaginaryaumbers (30), and whose real

characierislic roots are Thy oy Tan &hen A is orthogonally similar o

B = diag (B, €y, . .., Cn),
where the C; are defined byB1), (30), ond B = diag €5, ..., 10"

If the proof of Theorax} 9-17 ig well in mind, it will be easy to
follow the modificatiohd which will be made to prove the present
theorern.  First we'préve some lemmas in which A always means the
matrix of Theog{eirh 0-27.

LEnrya 9;—‘%‘." . If M is an n X n real matriz, any basis for the null

space one G of M is also a basis for the null space over © of M.

Hen@Yhe latter space N has a basis of normal, mutually orthogonal,

regl dector s, '

The rank g of M is unchanged by enlarging the sealar field from
Gtoe (Corollary 3-11). Then the null space of M over both & an.d
€ has dimengion h = » — g. Tfe,...,onforman orthonormal basis

for the nyyy space of M over &, these vectors belong to the null space
-‘_‘_‘_‘_\_‘_‘_‘—-—\_

&n:l ?f there are no real characteristic roots, the block R is absent from B.
1 all toots yre real, R is the only block present.

N\
Henee if f(} has any imaginary roots they fall into pairs of conjugate
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of M over € and are lincarly independent. (Why? I'ind a relevant
exercise in Chapter 3.) These facts complete the proof.

Liyma 0-14, Let a = bi (b # 0) be a pair r, 7, of conjugale
imaginary characteristic roots of A. Let N and N be the nuil &paces
(over ©) of +I — A and 7T — A, respectively. Then of o, ..., o
form a basis for N, @, . . - , @ form 6 basis for N. :

The conjugate @ of « is the vector whose coordinates are the con-
jugates of those of «. Since 4 is real;, Aa; = ray implics ~

—_— ——— — — N
Aa; = Ty, Aag = Ty, '\:\

so that @, belongs to N. The independence _'@ T, .. K “mplics
that of @, ..., &, whence the dimension h' of J?":Qbﬂ}":t:ﬁ: h=h,
Since the roles of ¥ and N are interchangeabie, Ia_,\g:h,. B =k, so that

@, ..., @ form a basis of V.

Liawma 9-15. Let & and E be conjugale chgractyristic vectors of 4
corresponding to ¢ -+ bt and a — b3, reﬁ@tt@velg; (V= 0). Let
y=£+4 §::é(g—g). '
Then RN
{(a) v and & are real, 'rwnzjc{%p'ﬁvéc.‘.‘ms,' .
(b) Ay = ay + b, As=\*by 1 ¢3;
(e) A’y = ay — b &% = by + ad; !
{d) v s mthogo-r;al)u 8; S
(e) v and 3 hawgsthe same length.

The reality of W and & is clear. If v were zero, QWGU_IZ\;E_ ha?é- to be
pure imaginéry (1.e., £ = ¢y where 7 is real) and if § were #e70, € would
have tozb{gzreal. But o '

(32).;%"  Ab=(atbt—ai+bit, bEO. -

. If\P'is real, the left side of (32) is real and the right side ig not; if £ 1s
\ ‘pure imaginary, & = in, the left side is pure imaginary, _an)ﬂ the right
sidc, aig — by, is not. Thus v and & are not. zero, and (a)is ‘proved.
Next we consider (c), and use the fact that 4" = A, iLet a4
= r. By Lemma 9-10 |
Ag=r, Af=aF-r5 |
Ay = FE+rE= (6 — b)E+ (a+ bE !
=a(f+ &) — bt - §) ;
= ay — bé. ) ’
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The second part of (¢) and both parts of (h) are derived similarly.
For (d) we cumpute

7' (ay + b8) = aly'y) + b(v'8)
(A'y)'y = (av — b3)'y

= a(y'y) — b(d"y).
Therefore, b(+'8) = —b(8’y). Since b = 0 and 8"y = (Fv) = 1’6 we
obtain 4’8 = —+’8, whence +’6 = 0. This proves (d). To prove (g}
. N\
we compute

' Ay

f

v A8 = v'{—by + ab) = —b{+'Y) O
= (A’y)'8 = (ay — bb)'d O~
= -b(@8),  b#0. 3\

Therefore v’y = #'3. This completes the proof of the ls;rﬁ:ﬁa.'
Now we are ready for the proof of Theorcm 9—27:}‘1‘0 find an
orthogonal matrix P such that P-1AP = B or, equivalently,

N
AP = PB, )
¢

it is sufficicnt (and necessary) to find a seb. ;

(33) Ny - ooy Tgy TL a1, ’;”':'..1 ;.Y""f m

of mutually orthogonal, normal veotors of V(&) such that

(34) AN, G=1,...,9
(35) . Aysstary+ bid; (G=1,...,m)

A8y = —byy; + aidi.

Since the last pair of équations may be written as

O~ a; —b;
.t\"A('Yf! ‘SJ') = ('YJ') Bi)l-:bf {1;]’
& _
it is clear ‘g%"{he matrix whose columns are the vectors (33) will
do the jobyequired of P.

T.Q‘ﬁfﬁ the vectors (33) consider, as in the pmof of Theore.m 9-17,
the\m‘ﬂ[ spaces N (s) over € of the matrices sf — A, s varying over
the distinct characteristio roots of 4. If ¢ is real, N (s) has, by Lemma
9-13, a basis of real veclors which may be chosen to be. n_orrnal and
Tutually orthogonal. The number of vectors in this basis 18 (Lemr.na
%-11) the number of r; which are equal to s. Making suleh 2 choice
of basis for rach N{(s) for which s is real, we obtain the desired veetors
M - ., 1y, mutual orthogonality being assured by Theorem 9-20. |

H § = a -+ bi is an imaginary root, and if a1, - . ., & form & noTImA
Mtary basis for N(s), then § = a — bi is also & root and N(3) has
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@, ..., aas a basis (Lemma 9-14) which also is normal and unitary.

g

} 1. Prove Theorem 9-23.

N\

(Why?) Let £ denote any one of the «;, so that t=mn; Then¢and
& may be used in Lemma 9-15 to define vectors v and & which obey
equations (). Since by (¢) ¥ and & have the same length /, division
by { converts equations (b) into equations {35) in which
vi=/l, 8 =20/l

arc normal.  The orthogonality of these two vectors is implied by (d).

For a dilfercnt pair of conjugate imaginary roots there will Adike-
wise, be basis veclors ey, + -« % and @y, . . ., & Continung for
all the distinct pairs s, § we obtain 2m vectors which arg Sgutually
orthogonal: O

~

(36) &1, als wen g Qmy [, . < ‘
Replacing cach pair a;, &; by v;, 6; as above gi}{é@'\the get of vectors
T 611 N £ 6‘-””!

which are normal and satisfy (35). ,='.\\'

It remains to verify the orthogona]ity;\t;f the sct (33), this having
been done for the first ¢ vectors m{and for each pair vy ;. Since
i and either of a;, &; are chara(;‘eefistic voctors of A corresponding to
two distinet roots, 7, is orthogdnal to every vector in (36}, henee also
to their lincar combinat-ionsfq«,-; 8;, Now let u; denote either v; or
§; and u, denote v, or &(j = %). Since a is orthogonal to bhoth a;
and &;, it is oﬁ-hoggml\to zs. Likewise @ is orthogonal to uy and
since w;is 01‘th0g0h@k Yo both ax and &, u; is orthogonal to yp.  This
completes the pracf. The proof of the next statement is left as an
exercise. \ :

THEQB@;\} 0-98.  Two real, normal mairices are orthogonally similar
if atrddonly <f they have the same characteristic roots; also, if and ondy
zfg.}hey are stmalor.

s EXERCISES

2. Prove the linear independence of the veetors @, . . ., @ in Lemma a-14.

3. Using Theorem 9-25 show in detail how Theorem 8-27 speciulizes in
case A is a real, skew matrix or an orthogonal matrix.

4. Give an example of a real, normal matrix which is neither orthogonal,
gkew, nor symmetrie.

5. Lemma 9-14 implics that the imaginary roots of a pormal, real matrix
pceur in conjugate pairs @ 3 bt such that @ — bi has the same multiplicity
as @ + bi. Is this true for normal matrices which are not real?
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8. Prove thatl Theorem 9-27 remains valid if some or all of the matrices €
are replaced by thelr transposes.

7. Find a prool bused only on the ideas of Chapter 8 that the matrices
A and B of Theorem 8-27 are similar,

9-15 An interesting factorization. It is a remarkable fact that an
arbitrary square complex matrix is expressible as a product of two
matrices of very special types, namely, positive semidefinite and
unitary. The faet that, our knowledge of these two types 18 extensive
lends importaner to this result. We shall take only the case of 8
nonsingular mairix (see Theorem 9-30). _ (\A)

A\
TrEoRkM O 20. Lot J be a positive semidefinile malriz. Phen
there is o unique positive semidefinite matric H such thel HE = J.
Moreover, H has the same rank as J. L&

Since J iy Hormitian, henee similar to a diagonal matrix, it has a
decomposition into principal idempotents (Theqre\M’Q—ﬁ),

(37) J =By e GBS
where every j; 2 0 and cvery B is Hermitian, (Why?) If there

. v

exists & matrix H as described in the~fheorem, H also hag such a
decomposition, ONY
H=MhF+ w FhFe hz0,
H?=h21’F171:‘§"+h3Fq=J- ) )
Since the last equation ok(‘air‘ly is & principal idenxpotent decompost-
tion for J, the uniqueness of this decomposition implies that the

distinet numbers 24 , b3 are the same set as jn - - - , Ju, and that

Fy .., F,are (helsime, in some order, a8 By, . . - , B, Wethenhave
¢=tand, Clgfg‘ihg the subscripts, if necessary,
.':\ hgﬁ‘\/;;o, Fw':E{- (3.:1:"':5)

e requirements of the

th@li”é’frf is the malrix

(38) H— Vi + -+ ViEs
obtained from (37) by replacing each characteristi
lonnegative square root.

This construction always produces a matrix H such that H =1

Moremrer, IT" = H. so the constructed H is always Hermitian.

. , Y ot
nee (38) is incipal i tont decomposition, the distine
{38) is a principal idempotent "y, and the Each

characteristic roots of I must be Vi (1= 1 -+

Thus tie ";;nlsf possible matrix H fulfilling th

¢ root §; by its
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that these are not negative implies (Theorem 9-25) that  is positive
semidefinite.

TrEoreM 9-30. If A is a nonsingular compler matrix, lhere exist
unique malrices H and U such that II s positive defindde, U is
ungtary, and A = HU. '

The clue to the construction of I and U is found by assuming the

result. Then

- - ~

A = HUU'H = IUUIT = H .

Thus H is a positive definite “square root’ of the positiygz\' definite
matrix J = AA’, and by Theorem 9 29 there is only one giwh matrix
H. If then 4 = HU = HU,, the nonsingularity of [ tmplies that
U,=U. This proves that if the matrices /i anQ{U in Theorem
9-30 exist, they are unique, i

The way to prove the existence is now clear, \\The matrix J = A
is positive definite and determines (Theorem{/8-29) & positive definite
matrix F such that £2 = J. It remaing c’»tﬂy to show that U7 = H'4
is unitary. First ohserve that since I8 positive definite, so s FI7%
(Why?) Then o0

U0 = HOAAEY = HoHYI = 1.
Thus U is unitary and _t-he‘prét}f is complete.

It is well known that ;aa:e‘h nonzero complex number z is expressible
uniquely in the polar\ trm z = hu, where h ig real and positive and %
has the form A\ '

7} %= cos t+ ¢sin l.
Since the ingerde of » is its conjugate, the analogy with Theorem
9-30 is agparent and for this reason the faclorization 4 = HU in
TheorefN-30 is known as the polar decomposition of A. Recall
th@i;\'hjin the express?'ion z = hu 19 Lthe absolute value of z,

" \ ¥ -
) h? = 2z,

so that h is the positive square root of 22, just as IT above iz the
“positive square root” of A4,

Exrrcises

1, Prove the modification of Theorem 9-30, which asserts that A J¢ ex-
pressible uniquely as 4 = /2, {7 unitary, 4 positive definite.
*2. Prove that the nonsingular matrix A of Theorem 9-30 is normal if and
only il HI; = UH.
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*3. Generalize Theorem 9-20 to the case HF = J, k being any positive
initeger.

*4, Let B3 be po=itive semidefinite.  Prove that if & is any positive integer,
& unitary matrix commuting with B* necessarily commutes with B.

b, Let 4 b o vongingular normal matrix A = HU as in Theorem 930,
Prove that if £ i~ 0 positive integer and A; is a normal matrix which is a kth
root of A (A = A then A, = H U, where H| is the unique positive definite
matrix sueh that 7% = I and {7} is a unitary matrix such that UF = U.
Conversely, oviny sueh normal matrix 4y = HU) is a kth root of 4,

APPENDIX p; \\\'

9-16 Small vibrations. A dynamic system with n degrees of (ree-
dom is describwd in terms of n variables g, . . ., g, Which are] palled
generalized di~xplacements, These are functions of the tme. ¢ whose
values al cach moment completely determine the cqnﬁguratwn of
the system at thut moment. If the system is conscrvative and is
undergoing small vibrations about a position of s}ablv equilibrium,
its potential energy U and kinetic energy T ma\x, to a high degree of
aceuracy, be represented by quadratie formB

U = 3Q'KQ, T *”*Q'MQ,
where K = (L) and M = (mq) are Wi X n symmetric matrices of
constants,

€ = col (ql,...&q\,‘}, Q—col (g, <« -+ Gus

’\' 4= 2. G=1,...,m)
Lagrangu's PQllc].tJE\nS for the Vlbl'a.tlng system may De written as
2 55(3_{’) o, (i=1,...,m)
\Y4 t\GG; i
Then \\\ g a
AN A\ U=32kiqq, T= $Zmdidi
am:Qh{, reader can verify that
U aT .
aq‘ = Zkig;, (Tg,‘ = 2.
Thus Lagrangy’s equations become )
2 ma; + EkﬁQf =0, (f=1...,%
where ’ !
_ &,

T odar
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Many problems in physics and engineering depend on the solution of
a system of equations of vibration like those above. In matrix
form this system may be written as

(39) MO+ KQ=0.

Sinee the kinetic energy is positive except when all of the generalized
velocities ¢; are zevo, M = (my;) is a positive definite, real, symumetric
matrix. The theory of pairs of quadratic forms (Theorem 9-13) fiay

now be applied to (39). A nonsingular linecar substitution
¢\

Q=PW, P=(py), W=col(w,..., Wl ("
leads to the equations ¢ ‘.}"

Q=PW, MPW+EPW =00
(PPMPYW + (PKP)W =80

As we have seen in Theorem 9-13, if is pc>s@}e to choose P so that
PMP =1 PKP= d1a,g\(r1, ey Ta)

Then the system becomes

W+ diag (;-;,:;‘"'“‘ , )W =0,

E»{i?ﬁrwi:o, (G=1,...,m
g0 that the variableg are;\separated that is, each equation involves
only one w;. In Lhe\e\?y, then, we have shown how to solve the equa-
tions of motion of Syconservative dynamical system undergoing small
oscillations about a position of stable equilibrium.
t\..

9-17 Jfepdtive solution of frequency equation. The job of finding
the chdraéteristic roots of a matrix is very often the crux of a problem.
One Of the important instances oecurs in the equations of vibrations,

{a MY+ KQ=0,
discussed in the preceding section. The solutions Q@ = (g1, . . . , gn)

of primary interest are of the form
g: = @ Sin 7, (i=1,...,n)

where the a; arc constants (called amplitudes) which are not all
zero, and r is a nonzero constant. If we confine attention to such
solutions and write

=col {a, ..., @),
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then .

Q=asinrt, Q@=—rsinri-aq,
and the cquntion {40} becomes

(—r*sinrt M +sinrt Kla=0

ar

(41) (2l — Da=0, A=MK

There exists 1 nonzero veetor o satis{lying {41) if and only if

{42) [P — 4] = 0. ®

Thus r* mn:»:T be a characteristic root of 4, and « a charar‘roriej;i?: s
voetor of 1 corresponding to r2.  Because r is an angular freqnéney
of wbmtuw (42) is known in engineering cireles as the, ﬁ‘eq‘umcy
eguation., '\§.

For matrices .1 of large size it may be difficult even th.daleulate the
characteristic polynomial of A, let alone its roots. \{heie is a popular
method for b pproximating these roots and the t¥apondmg vectors
@, which is known as the method of f.',i(’mtwn since it involves re-
peated muitiplication by 4. A brief expos;tmn of this method will

now be given. &
Let A be a nonsingular complex rﬁ[atrlx The notation for ifs
distinet cliirecteristic roots 81, . . “y45; may be 80 chosen that
ol 2 R+ 2 Jal >0,

We now mal\(‘ two aqsumpﬁons () A is similar to a diagonal matrix;
b) |31 L D
By the ﬁn f asst 1mpt10n A has a principal idempotent decomposi-
tion x\*’
~\ A=sE+ i
and for eag?g‘}ositive integer ko
| o) = B+ o+ otBe
Ry f‘h\e sceond assumption, if & is large the quantities sh, 1> 1, are
hegligible in comparison with s, Stated difforentl, the matrix
s EARF = F + (Sz/sl)kEﬂ. SRR (St/sl) £
approaches E, as a limit when & —» co. That is, each element of
SA¥ is a function of k w hich, as & increases, approaches the corre-

spondingly placed element of F. For large & we may therefore
Write

Srk‘,q_k = E},
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. where = denotes approximate equality. Then

AF = S?‘FIE] = S]_(S];_El),
AEH = 31-’4;':.

The last equation reveals the method for approximating 5. We
compute suceessive powers of A until we reach a power A*" which
is nearly cqual to a scalar multiple of the preceding power, A%
The sealar is the approximate value of s, the largest churancteristie
root of 4, and the approximation may be improved by (:(ml,inu\mg '
to higher powers, O\

The following modification not only simplifies the cowpittalion,
but also leads to an approximate charaeteristic vnct{grj’a‘i:nr-respond-
ing to . A\ 3

Let a9 be any nonzero column veetor, so ‘r,ha.t.-..‘%d‘g = (0. 1fine

oy, = Akay, k=12,

w\/
Thus .‘;\
. W\
ap = ($$E, 4+ - KhEE Doy
= S;i‘(Elau) +, ™+ Sf(Eeau)-
As in the preceding discussionps; e, approuches £ as o limit, so
for large k N
o = silha,  an = S$E
i...’\ [ R = gian.
"Thus we compute thesuccessive products
oy = Aﬂﬂn, Oy = Aal, PR

until we find “8? vector aza = Aoy which is approximately a scalar
multiple:@{:}he preceding vector ax. The sealar factor is the ap-
proximate-value of s;, an approximation which may be improved by
contiiiting the process.
.. (Sifice the “equation”” wig1 = sier may be written as Ao, = i,
1§ can be shown that the veetors a; approximate a characteristic
vector of A corresponding to s;.  Inmumerical work it often happens,
however, that the coordinates of a, inerease without bound as &
increases. In fact this happens whenever Is)j > 1. This nuisance
may be avoided Ly the following (final!) modification of the process
for approximating both & and a characteristic veetor corresponding
o 5.
After Aa; is computed, the coordinate ¢; in some fixed position s
made 1 by removing & factor # from all the coordinates of e
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The vector 50 constructed, rather than Ae; itself, i3 defined to be

@i, and thizis done for=0,1,2,.... The discussion above then
implies that the factors &, &, . . ., tend towards s;.
Examrri:
1 2 1
A = _2 2]: g = [0}:
-1 7
Aoy = _2]; h=1 o= [2],
5 - 1 N
ACE]_Z Gjl, t]_: 0, 0= [%]} RGN
raz 1 O
Agy = 2az:|’ t, = I5F = 3.40, “3=[23 T ON
L5 d 17 ~
81 = ] ~\\
;‘10:3 = %E y b= 6—% = 3‘09, oy = [1‘&‘]’
.17 BY
217 x~\\:
Aa4= ;gg:l; f4-'= %1: 3.56...'\;~
| 5T )

In this simple case the characteristic equatioh is 2* — 3z —2 = 0 and
its roots are « = 3.56, x = —0.56. o\

The physical facts of various praciical problems give hints as to
the coordinates of o. When these' hints are used in choosing the
initial vector ay, the convergéhce of the iteration process may be
hastened. e .

For some purposes onlgg\t\.he dominant root is required, or some_t-lmcs
only the root s, which jhas smallest absolute value. Since slgi 15 tshe .
dominant root of S, it may be found by applying the iteration
procedure to thiymatrix. , ‘

For DFOCE&Q"L'\GS; and proofs when the hypotheges are ‘not valid sce
Referencgzé}which also presents methods of computing the roots
other thim's; and s,.

98 Orthogonal matrices. In the language of automorphs, orthoe-
onal matrices may be defined as the real, congruent automorp hs of
identity matrices. Taking S =1 in Theorem 5-24 then gives all
orthogonal matrices PP such that I+ P s nonsingular.  The ]aitt?r
condition is equivalent to the property that —1 is not-.a characteristic
root of P. (Why?) Orthogonal matrices with thJSIPI'OPeI'tY are
called proper. .

The hypotheses that §4 K and 8 — K shall be nonsingular are
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always satisfied in the present case in which §=7. (Why?) Inm
summary we have proved

THEOREM 9-31. Let K be any real, skew matriz,  Then the mealriz
P=({(+KyYI-K)

is properly orthogonal, and every properly orthogonal mairiz P s
expressible in this way.

We thus have a construction for proper orthogenal mairiedsMn
terms of a type of matrix {skew) which w¢ know how to comit,uw‘r

The last theorem leads to an intercsting analogy betw el m aporly
orthogonal matrices and complex numbers having unlt nerm. The
norm of ¢ 4 b2 is defined to be R N

(a+ bi)(a — bi) = at + b0

that ig, the square of the absolute value of ¢SV, Then a -+ &7 has
unit norm if and only if a2 + 8 = 1. In order To develop this analogy
we first consider an analogy between amb\traw square matrices sl
arbitrary complex numbers. {

Vel 4 be u square matrix over (P 3 lhen A is uniquely expressible
as AN

A=85+ K,vS symmetric, K skew,
whence AN
W a=s-k

For any complegg'.r’gimber

(43) P\ z=a+b
. I

the conq.g&;te 13

(44) OV Z=a— b

Coiparison of (44) and (43) with the two preceding equations
\?Qvéa.ls a clear analogy:
A=8+K—>z=qa+ bk,
S —a,
K — b,
A'=8S—K—z=a-b.
That is, the transpose process for matrices is analogous to the con-
jugate process for complex numbers; symmetric matrices are those
which cqual their transposes, just as real numbers equal their con-
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jugates; skew matrices are the negatives of their transpeses just as
purely iraaginary numbers are the negatives of their conjugates.

Since an orthogonal matrix is one whose transpose is 1ts inverse,
the above analogy would associate this class of matrices with the
class of complex numbers z such that

F=zL
These sre exactly the numbers z having unit norm. Moreover,
properly orthogonal matrices would then be associanted with those
+ whi : N\
numbers 2 which are = —1 and have unit-norm. _

We may show that a complex number z # —1 has unit naf if
and only if 2 is expressible in the form NS 7
(45) 2= {1+ )71 — e
where ¢f s purely imaginary or zero. S
O If (45) holds, then _ \%

7= (1 — ety {1+ el
Any square root of 2 may

5o that 25 = 1. Conversely, lot 22 = 1\
be denoted by {

p <
Then p — g¢ also has unit norady X

o+ o)paa =1
(ppo)t=p— ¢

A\ e=(p—ai}p— T
A = (p+ @) e — 9
<& = (1 + ey (1 — ey

where ¢ = G.ZP\ “ This completes the proof that the set of all oo oplex
Ilumber@f ‘unit norm coincides with the set of numbers (45). (I
p = Q:lhe construction fails, but then one can show that =%
ar exeluded casc.) '
g \Since gkew matrices K correspond, _in 0
aries ¢, the formula in Theorem 9-31isel
For further extensions of these ideas see Re

- and Reference 9, p. 122.

ur analogy, to pure imagi-
carly the analogue of (45}
ference 7, PP 162-167,

atrices. Questions of com-
jmportance i the applica-
of & commutativity theorem

9-19 Commutativity of Hermitian m
mutativity of matrices are of increasing
tions of matrices. An interesting sample
follows.
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TharorEMm 9-32. Let A and B be Hermalian matrices. Then A
commutes with B of and only if A and B are polynomials, with real
cocfficients, in a common Hermitian matriz C.

If A and B are polynomials in a common matrix €, it is evident
that 4 and B ecommute (even if the coefficients of the polynominls
are not real). Conversely, A and B have decompositions into prin-
cipal idempotents,

A= ChE'] 4+ e 4 a,Er, ) N\
B=lll1f"'1+"'+baf‘1a, A\ ¢

where the idempotents E; and F; are Hermitian.,  Since, ~L'B\"\BJL
it follows (Theorem 9-3) that B commutes with em,h 1'3; “ From 4
different viewpoint, since E; commutes with B, £, ~mu~.t comitite
with each principal idempotent of B, In short & ™
Eilry = FiE; ]
for all § and k. N
Consider a matrix A
C= 2 e
where the rs real numbers ¢y are .a}l dlfstmct from one another. The
proof that ¢ is Hermitian 15 trﬁ 1al By Exercize 9, Section 47,
we can pick polynomials e(@) aid f(z) in ®[z] such that

. ofes) = a;, flea) = b
for all  and &. We ﬂxéﬂ find, since &£; commutes with F;, that

»

K , V0% = (ZepBFy) (Zenk i Fi)
A\ = Zcl I,
& O = Zen B,
£ \ ARSI,
whence ;\\”'
B e(C) = 2 a;BiFy
) ik

\ \™ _ ;(g a,J-E',-)F:c
= 2AF,,= AD Fy =

Similarly,
() = D bEFy
Lk

= 2 D Ei{byFy) = B
ik
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This completes the proof of the theorem.
An application of this result to the unitary reduction of a pair of
Hermitian matrices is obtainable immediately.

THEoREM 9-33. Let A and B be n X n Hermitian mairices. Then

there exists @ unitary matriz P such that both P'AP and P~'BP are

diagonal, if and only if A commutes with B,

$iupposc that the matrix P exists. Since two diagonal matfit:e“s,\
commube, \

£

PlAPP-1BP = P-'BPPIAP, O
P1ABP = P'BAP, ;\""}\ )
AR =BA. _ <~{},\
Canversely, if AB = BA, the previous theorem appliés 50 that
N\

A=e@), B=§0), O
where € is ITermitian and e{x) and f(x) are p{:{)&ﬁomials. IThere iga
unitary matrix # such that P-ICP is a diagenal matrix D, whenece
¢(D)} is also diagonal. But P\%

P—AP = o(P_€B) = e(D),
P-iBP = f(BSCP) = f(1),
s¢ that P~*AP and P7BP areboth diagonal.
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LINEAR TRANSFORMATIONS

+/10-1 Coordinates and bases. Let

(1) Q1 .., Oy N\
form a basis of V,(F). Then for each vector <O
@) £=col (cy, ..., cn) O

of V.(5) there are scalars a,, .. ., a, such that ,“'4\}‘.

3) E=mont - + o \.\w:\{'"

The scalars a: are uniquely determined by £ and.the basis (1), and
are called coordinales of § relative to thls ‘bafﬂs To expresg this
relationship briefly we write N\

(4) £x = col {a, -*.-:-"?’ ).
If the particular basis (1) is (,learly understood (4) determines Lthe
vector £ just as well as (2). o8~

In Vi{®), for example, qonmder the basis

o ST L]

For a particular f}ve shall find £&,;
Q¢

::‘i"; - 2 _ 3]
\M E [3]’ Ecz [02],

O\ 2 a
*::;\ I: ]_: ey + deae = I: l+a2]:
’..\\; 3 A — 2
<\)s./ G+ a=2 d— 5 q— —1
/ — = 3 ! 1 2, Uz 21

©) tam [_ﬂ

Conversely, if coordinates 7, of a vector 5 are given, 5 is determined.

T'or example,
3 2
na=|:__]]; n=3al—a2=[4:|-

214
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If the basis (1) of Va(F) is the basis of unit vectors, for each vector
£ we have T
i) E=col (e ..., Cr) = &a
The basis of unit vectors is the only one for which the identity (7} iz
vaiid. IXowever, coordinates relative to an arbitrary basis are about
a5 handy as those relative to unit vectors. Sums and scalar products
can be caleulated in terms of coordinates relative to any basis:
Q"
(2) Eo=col (@, ..., an), na=co0l (b ..., b
imply : R
- 7'\
£+ ma=col (@+by ..o, @Gt ba)y >
(k) = col (hay, ..., kaa) = ki K )
The first of these cquations (4) means that '»’:\‘
E +# ='2(l‘1e + b'a')ai, \
the trath of which is an obvious consequanee of the meaning of (8).
The zecond part of (9) is equally uasy‘g}prove.

()

Taworkm 10-1.  Let £, 9, and {Nietn Va(5), and & lie in F. Then
=%+ i and only f (= :ﬁ;’g&-}- ey and ¢ = ki if and only if
{a= k- ka ,‘}:'

We have proved aboy@thal if ¢ = £+ 7, then {o = &« 7. Sup-
pose now that the Iz;ttér equation is true, whence {o = (E+m. by
(D). Since £+ g ‘t@\ls has the same n-tuple of coordinates as
£+ is ¢ Thefipal property of Theorem 10-1 has a gimilar proof.

OOROLLua\R}:.\l[')—L t=at+bnif and only if to = - Ex+ b 7. |

Th pi‘ﬁb‘f is left for the reader.
FO&"-}(G}) and V(®) we know that coordinates of £ relative to
the Bakis of unit vectors are ordinary rectangular coordinates (of the
\fzn}i ‘point of £). This fact may be generalized.
" TerorEM 10-2. For Vi(®) and Vi(®) coordinales relative to any
orthonormal basis are ordinary rectangular coordinates.

If we discuss Va(®) the reader will be able to make his own proof
for three dimensions.. Let ai, o form the orthonormal basis, and let

£ = aion + a2

As we gaw in Section 9-4, a; and a; are perpendicular line segments of
unit length. Hence there is a unique rectangular coordinate system



216 LINEAR TRANSFORMATIONS [cuse. 10

such that o and o» are the unit lengths along the positive directions
on the x and ¥ axes, respectively. Each veector a;a; has length !
[(@sers) (@sees)|E = [alfen]t = |a].
Sinee vectors add by the parallelogram law (Section 2-1), and since
in the present ease the parallelogram is a rectangle (see Figure 10-1)
it is clear that the end point of £
has coordinates ) and as. ~
Rectangular  coordinates \in
Va(®), for arbitrary n, gnay be
defined simply as coordinates rela-
tive to any chosep~erthonormal
basis; and each grthonormal basis
may he called.“a,:\rectangula?‘ coor-
Fia. 10-1 dinate systend

// \[f 1:02}

10-2 Coordinates relative to two bases.,’We frequently have oc-
casion to change the basis of V.(F). St{p’p}se that we have the basis
{1) and a new hasis,

(10) B . -

Then the veetor £in (2) is a 1jgéai‘ combination of the 8;,
(11) Em—(‘&&—t- cor o+ bafa,

so that relative to th&{{‘e“? basis ¢ has coordinates

(12} O E=col by, ..., ba).

Tt is not hard™o"eet a general formula for the new coordinates (12)
of each \regt.\oili\i'n terms of the old coordinates (4) and the matrix
relating thownew and old bases of V.(F). Let M and N be the mal-
rices whoese ith columns are «; and g, respectively, =1, ..., n.
ThemM and N arc nonsingular, and we lot 2 = N—'M. The formu-
iés‘:‘;(?;) and (11) expressing the same vector £ in terms of the two
bases may now be written as matrix products

£ = Ngg= Me,

s0 that

{(13) by = Pg,.
TueorsM 10-3. Tf a vector & of V.(¥) has coordinales £. = col
{ay, . . . , @) relative to one basis and coordinates &z = col (by, . . ., ba)

relative to another basis, the two sels of coordinales arve velaled by
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cqueadion (13} in which P is o nonsingular malriz independent of ¢
arud determined by the two bases.

Note (by Section 3-13) that an arbitrary nonsingular P ean be
made to oceur in (13} by appropriate choice of the new basis.

Exercises

1. If the old and new bases in Theorem 10-3 are orthonormal, show that P
is orthogonal. Conversely, assume that P is orthogonal and prove that the
new basis is orthonormal if and only if the old basis is. N\

2, In Va(®) consider the basis (5) and the new basis .

AW,

o []ae[] O

Find the matrix P in (13) for this case and compute the cpf)ﬁi:’hates £ of
£ = col (2, 3) from P und (6). Check your answer. & *
3. Prove Corollary 10-1. \¥%

p §

10-3 Linear transformations. In a.naly‘c-ie’;g;émetry a curve in the
xy plane is said to be symmetrie with réspect to the z axis if for each
point (z,y) on the curve, the point (¢,>y) also lies on the curve,
Staled otherwise, the correspondepc’ql
(14) (RS @)

{(the arrow is read ‘‘goes tol? or “corresponds to”) carries each point
of the curve into a po:'pgﬂs?ef the curve. Notice, however, that (14}
may be applied to e‘u@&jf' point (z,3)
of the planc. Ther\(14) carries each Y
point into its i‘nﬁrfbr image’’ in the Qe ')
z axis, whenee this eorrespondence of '
the zy plafid with itself is called a 7e-

Hectiond he z axis. A eurve is sym- (x,v}

moetrgdn the z axis if the reflection ¢

@E\ﬂ}e zy plane in this axis carries O X
¢h point of the eurve into a point Fre. 10-2

of the eurve. . iy .
This is but one instance of a correspondence of a set with itself.

Another is the familiar example of rotation of the zy plane.* Here

* The z and y axes are to remain fixed, and each point P with coordinates
{z, ¥} is to move to a new position @ with coordinates (z', ¥') by rotating
the line OP to a position 04; all lines OP totatc through the same angle.
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each point (z,y) is carried into a new point, or position, (z’,4"), where
z’ =z cos £ — y sIn §,
¥ =z sin i+ yecos i
Clorrespondences of a set, in particular of a vector space, with itself
oceur so often in mathematics that they are known by many namoes:
correspondences, mappings, transformations, funclions. In V.(F) we
may consider a mapping T carrying each veetor £ into a well-defined
veetor, which we shall indicate by T'(§). The latter veetor is called
the map or image or transform of £ under T, If £ = col (es - - 1 e,

various mappings may carry & into ¢\
1  § .\ )
T(E) = COI (C?J Cé} ret cn): A\ by
T(E) = col {(—er, —ay ..., —Cn), “4 N

T(E) = col (Cz, €3y -« -y Ony (‘1),
Ty =col (oot o, ca b oy .. Crb+\)
In these examples T(£) is defined by f()lmula@,;\m’ terms of the coordi-
nales ¢, ..., ¢, of £ velative to the unit §detors. We ean equally
well uze ecoordinates relative to any othe‘r hasis. However, a trans-
formalion may be defined without ,—m"y algebraic formulas at all,
Moreover, for any given T, the vg(,ml T{g) is completely determined
by £; it does not depend on angh ‘partlcular basis of the vector space.

DerixiTioN 1% A lined? i-r‘;:t.nsfo-rmaﬂion of V.{F) is a mapping
£— T() of V.(5) im;@"ﬁsdf such that

(B + mb) = aT(8) + T (&)
for overy palr xjf vectors £ and & of V() and every pair of scalars
a, and aa. ,\

Lincar\{ransformations are of great importance in mathematics.
As we ah'a}ﬂ see, the theory of square matrices amounts to a particular
“-'aj:.n@ffétudying linear transformations of vector spaces.

N Tarorey 10-4. A transformation T of V.(F) is linear of and
only if
Tk + &) = T{&) + T(&), T{at) = aT()

Jor every scalar o and all vectors §, &, and £a.

* Lincar transformations appeared concretely in Chapter 9. If is easy
to verify that those transformations have the property stated in the present
abstract definition.  But this verification will also be immediately apparent
from the next section.
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The proof is an excreise for the reader. In the four examples above
of transformations 7, only the last three are linear. The fact that
these are the only cases in which the formulas are linear in terms of
the ¢; is far from a coineidence, as we shall proeced to show.

Exrrcises

1. Prove Theorem 10-4.

2, If T is a lincar transformation of V,(F), prove that T{a.és +- - -+ b
= mT(&) + -+ aT(&) for every positive integer 7, all sealars a;, and sll
veotors & in V(). Q

. Prove that the correspondence (14) on Vol ®) ig a linear transformation.

34, Letay, ..., o be abasis of Fo(F), and By, . . ., By any set .o‘f"m}ectors
in the same space. Show tha$ there is one and only one linear.trhﬁsformation
T ol Va(F) such that T{ee) = B, =1,..., 7 N

5. Let T be a Hnear transformation of V.(F). Let Me the totality of
vectors £ in V,(F) such that T(§) = £ and N the ﬁs@xﬁty of vectors £ in
V(%) such that T(&) = 0. Prove that M and N ake gubspaces.

&. Prove that the subspaces M and N of P}@Dise 5 have only the zero
veetor in eommon, RS

7. Show that the following transformitions 7' are linear and have the
property TIT(£)] = T(£) for every £ in WulT).

(a) T(£) = £ forall £ o

(b) T(£) = Qforall & Ny

() Tf £ =col (@, ..., xobnd & is & fixed positive integer = =, then
T(E) = ool (2, ..., 2 0,0\, 0).

8. Suppose that the lingar transformation T in Fixercise 5 has the propert-y
that TIT(E)] = T(EXdeall £ in Va(F), that is, applying the transformation
fwice has the same;éct as applying it once. Prove that () the sum of. the

- subspaces M an\d Mg V.o (F); (b) the sum of the dimensions of M a,r}d N is n.

104 'M}}'tfix representation. Let

(15) v Qry ey n
befbasis of V(%) and T a lincar transformation. Then the vectors
P

~O T, . -, Tl

like any other vectors of Va(%), are expressible in terms of the basis
{13), so that

7
(16) Tley) = 2, adis (i=1,...,%)
- i=1

the cocfficients #; being written on the right for later convenience.
In terms of the matrices whose column vectors are the T{a;) and the

a;, respectively, (16) becomes
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[T(e), .o, T(aa)] = (e, . .., @) T,
Ty = (1:).
The utility of the matrix Ty extends much further than is indicated
by (17), where 7' is einployed in computing the images T'(«;) of the
basis vectors.
Suppose that £, = col (e, . . ., a.) relative to the basis (15). Then

(17)

(18) E=mon+ -0+ Ga,
T(E) = (11T(O£1) + -+ aﬂT(aﬂ) =1 &y
(19) T(E) = [T(e), - . ., Tl i
- (a‘l, e (IW)TUEQ. '\‘.‘\
Thus the unique coordinates ne Of 7 = T'(£) must be | O
(20} e = Tofa RS
In summary: .mf\i '

Tueorkm 10~5.  Let T be a linear ransformadion of V olF) mapping
Einton = T(§). Then, relative to some ﬁ:;eg&tbdsz’s {15) the coordinales
e 0f 7 are computed from the coordinaiés t. of £ by (20). The
matriz Ty = (i) s completely determbiped by the effect (16} of T con
the given basis. o

In brief, multiplieation of thel @éliimn of coordinates of any veetor
£ on the left by the squarestiiatrix T, produces the column of co-
ordinates of T(¢). Becau§t. of this important relationship between
the linear transformaj;im} T on the one hand, and the matrix Ty
appearing in (17) azi\sL\{‘?O) on the other, we call T, the matriz repre-
sentation of T relatiye to the basis (15).

The resemblane between (20) and (13) is apparent — a column is
computed bgomultiplying a column by a square matrix. The dis-
tinctionsd gontent, however, is very sharp. In (13) we contemplate
a singld¥ector ¢ and two bases of V,(F). The coordinates of £relative
t-o't-\He"two bases are connected by (13). In (20) we contemplate
twosvectors and a single basts. The coordinates of the two veelors

Nelative to the same basis are connected by (20). '

A further distinction Is that the matrix P in (13) is always non-
singular. The matrix 7' in (20) may be singular. In fact the nest
result asscrts that T4 may be an arbitrary n X % matrix over .

TuEOREM 10-6.  Let T; be any n X n matriz over § and let (15) be
a basis of V(). Then there is one and only one linear transforma-
tion T of V.(F) which vs represented relative to (15) by Ts.
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i%ach vector £ has coordinates £, relative to the chosen basis (15).
Then as in (20) the product T, is a well-defined n-tuple na of co-
ordinates detcrmining a vector . Thus we have defined a trans-
formation ’

E—y= T(‘E)r
which we shall prove linear. If

£ = ak + aeb,

we must prove that ' O\

T() = (&) + aT(E). A
By Corollary 10-1 it suffices to prove that O
1) T(De = aTE)a+ 6TEe N
The same corollary implics that M‘\'(.'

£y = Wafin + ok, N\

whenece PN
(22) Toke = 01T ok1ee +ﬂ-z§¥~’t;\£2n-

By definition of the transformation ) )
Tobo = T(Qﬂfi Totia = T

so that {22) is equivalent tafzij, and T is linear. By virfue of (.20)
the transformation T comstructed in this proof is the only -possﬂbl.e
one having 7 as its matrix representation relative to (15). This
completes the prook\™ . '

By means of this result each n X% matrix € over § may be in-
terpreted geqmé’tﬁ’cally in a space of » dimensions. Sclect any basis

oy, ..., ogof V,.(F). Then € determines and represents a lincar
transf m"h,fion
\OK“ Eﬂ- —r CE“‘
If'\éflmppens to be nomsingular, it may be given thi? and also a
<\. ¢ond interpretation. For (' also determines a new basis 81, . . ., Bn,

and the vector
Cga = Eﬁ'
is the n-tuple of coordinates of £ relative to the new basis. .
This dual interpretation appears also in analybic geometry In con-
neetion with the equations
@' =g cosi—ysint
y =z sin £+ ycost
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These may be interpreted (see Figure 10-2) as a rotation of sl
vectors OFP through a eommon angle & In this sense the equations

X0
Fig. 10-3 \‘
define a linear transformation col (2,28 > ol (x',%"). Butl there is
the alternative meaning (Figure 10—3}, in which the vectors OF, or
points P, do not move: The cooxdlnate axes are rotated through an
angle —¢, so that each point (x, ) has new coordinates {=',y").
p \’ ExERCIsES

L. In the zy plane egoh vector is first reflected in the y axis, then doubled
in length. Tind the/inifrix representing this linear transformation rclative
to the basis of unif j}{eé];ors.

2, Find the J@’a}’llk representing a linear transformation 7" of Vy{®R) rela-
tive to the %sia’al = col (1, 1}, @ = col (1, —1), il for £ = col {1, 2) and
7 = col 2N} we have P(¢) = eol (1, 0) and Ty} = col (2, 3).

*3, LEALE 4 linear transformation of V,(&) and V is & subspace, prove that
t. e"m;taiity of vectors T'(E), £ varying over V, lorms » subspuce; that is, a
lingas transformation of V,.(F) maps subspaces into subspuces.

10-6 Change of basis. The matrix A representing a linear trans-
formation T is detcrmined only when a basis of V(%) is selected.
Relative to a new basis, T will be represented by & new matrix B.
The relation between B and A is investigated in this section.

Consider, for example, the linear transformation 7' of Vo(®) de-
fined by the matrix
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e
1[5

relaiive to the basis of unit veetors w4, us. Then every vector
eol (o, az) also has coordinates @ and @, and

-] mo-[]-4[)

g0 thut . i ~
(23) a:I = $(m + Vv Bag), O
a = 3(v3a — as). ~
Suppose now that we consider a new orthonormal b@si’s‘.w

24) Br=col 3V, 5, = ool (=4 3VED
Then the computations v

T(B) = AB: o (i=1,2}
show that \ ,\ -

T(8) = Bin
T (182) "1: — (s

Since these equations displayfﬁhé expression for the 7'(3;) as linear
combinations of B, and Bathey show that the matrix representing 7'
relative to the new bagig’?‘&t) is

L\ 10
B= [0 —1]'

A</ ,
H a vector g«}éaé new coordinates £g = col (by, b2), ’1_(5) then hajfs new
coordinal€8yBes = col (b, —bs). In terms of coordinates relative to
the n(;\s?%z;éis, T is simply the transformation

J'\i’ :; bl . bl:| .
Y 2]~
Since the basis (24) is orthonormal, by and bs are ordina?y re_zct.g,nglflar
coordinates, and (25) shows that T is simply a reﬂectlfm in the “&
axis.” The fact that 7 is a reflection is not at all f)bw()}l&-frﬂm the
original formulas (23) in terms of the matrix A, but is easily obscrved

in terms of B. This brings out the im-

from the new formula (25) ’
as a device for understanding the nature

portance of changing bases
of a given linear transformation.
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Tueorem 10-7. Let T be a linear transformation of V.(F) repre-

sented by a matric A relative to a basis au, . . ., ., and represented by
a matrix B relotive to a basis B8y, . . ., Bo. Then B and A are similar,
(26) A =PBP,

where the nonsingular matriz P over & is determined by the two bases
{and is the mairiz P of Theorem 10-3).

In short, similar matrices represent the same linear transformation
T relative to two bases. This is perhaps the major motivation {tr
the study of similarity. In every concrete application of sipildeity
one may expect to find an underlying vector space on which thesgiven
similar matrices represent a common linear transfor'm.i.it}bn‘ To
prove (26) let £ have coordinates £, and & relative totle thvo bases.
Likewise, 4 = T(#) will have coordinates n, and ..‘fm,\ respectively,
relative to the basis of a; and the basis of 8. Byn¥heorem 10-3,

(27) fo = Pay wp = Pro, (0

The meaning of the matrix representdtin{z‘ﬁ\i; that
nﬁ = BEQ:';. n.
Substitution from (27) then gives
Pno = BPtsN\Y., = P-BP%,.

The last equation shows t}{at PABP represents T relative to the
basis of «;, whereas thig matrix representation is unique and is A,
This gives (26).

AS
O Exercrses
*1. Eet T b({;'linear teansformation of V,.(&), and let A be a matrix repre-
senting i{’:,}ﬁ”m\re that 4 is similar to a disgonal matrix if and only if V,.(F)
has a baais a;, ..., ax such that 7'(e) = ga, £ =1, ..., n, the & heing
soalaes./ '
Let A be an idempotent matrix and let 7 be g linear transformation
represented by A.  Show that 7 is of the type discussed in Exercise &, Seetion
10-3, and prove that A is similar to thé dizgonal matrix

I o]
0 o
(Hint: Use bases of M and N in Exercisc 8, Section 10-3.) Finally, prove

that two n X » idempotent matrices over F are similar if and only if they
have the same ranik,
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16-8 Orthogonal complement of a subspace. If M is an arbitrary
subspace of Vu(F), where & = & or €, the totality of vectors in V(%)
orthogonal to every vector in M is a set &(M) called the orthogonal
complement of M,

TusoreM 10-8. Let M be a subspace of Vo (F), F=®R or €. The
orthogonal complement O(M) of M s also o subspace of V,(F), and
every veclor i V() is expressible uniquely in the form p+ v, pin
M, v in (M), N

Lt vy, ..., aw form an orthonormal (or normsl unitary) basgsfer
M. Then (Theorem 9-8 or Theorem 9-15) there are furthep.yectars
e; (i =m+1,...,n)such that all n veetors a; form ar orthbnormal
{or normal unitary) basis for V.(F). The space 8 hpanned by the
new vieetors L
(28) ity + -+, On ’
may be shown to be 9(3), and every assertﬂo&’m the theorem is a

clear conscaquenee of the equality S = O(M},\ To verify this equality
one muy chserve first that S8 £ B(M) »[(Why?) For the reverse

inclusion, let ™
n= blal '!_"'f},""l_ bnan
be any vector of O(M). Then-daeh of ay, . . ., an is orthogonal to 7:
0= %q—Zab?aJ—b F=1,...,m

Thus % is in the space*panned by (28), so0 that o(M) = 8 and the
theorem is establl,eh.od
The sum of {Wo subspaces of V,(¥) was defmed in Section 2-8,
Part of Theefein 10-8 may be summarized in the statement that
V(%) is \tfb\\ulsum
(20) Q¥ Va3 = M + e(M).

O ) . . A
Sinsecvery vector £ in V,(F) determincs unique vectors £y in M
antl » in ©(M) such that £ = £x + », the correspondence
(30) E— b= T()
is well defined by the subspace M, and maps each vector in V(&
into a veetor in M. The vector T(§) defined here is called the per-
pendicular projection of £ on M. The mapping (30) carrying each &
into its perpendicular projection on a fixed subspace M is called a
perpendicular projection on M.
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Exercisus

1. Prove the inelusion § £ 0(M) ocewring in the proof of Theovem 10 -8,
2. Prove directly from the definition of O(M) that it is a subspaee.
3. Prove that O[O(M)] = M,
*4. Let 7 be s perpendicular projection on a subspace M. Drove that 7'
is & linear transformation and that T{7(£)] = 7'(£) for every vector £
b. Bhow that 7 in Exercise 4 has s matrix representution diag (F., ()
where m iz the dimension of M, )
*B. A space 8 is the direct swm of two spaces U7 and ¥ contained i S\in
ease § = ' + V and the intersection (see Section 2-8) of 7 and V"Qi LISTeS
Wewrite § = I/ @ V to indicate that 3 is the dircet sum of 7 ap(i: Vel Show
that the property § = U @ V is equivalent o each of the prepertics {a)
and (b): N
(a) S= U+ V, and the dimension of 8§ is the sum OF the dimensions
of Uand V. "‘\
(b} 8 = U7+ V, and the expression of any veMdr £ of § in the forni
F=oa+4 B ain i, 8in T, iz unique. PN
*7. Let T be a linear transformation of V,(F), “Prove that T is represented
by a direct sum diag (4, B) relative to a iable basis if and only if V,.(F)
is a direet sum U7 @ V sueh that 7 mz’i.p.'s’ ¥ into U and V into V.
10-7 Orthogonal transformgtibhs. In the real plane one may use
oblique coordinate systems, (see Figure 10-4) as well as the mare

AN\ familiar rectangular coordinate sys-

\\ " tems. In terms of oblique coor-

dinates the distance of the point
D™ (X, ¥) from the origin is

(X2 42X Y cos t+ YBE

whercas in terms of rectangular
coordinates {x,y) the same distance
X is given by the simpler formula

N Tro. 104 (31) @+ g,

The length of £ = col (zy, ..., 2,) in V,(®) is given by a formula
which generalizes (31):

(32) @i+ - +2)h

The z; here arc coordinates of £ relative to a particular orthonormal
basgis, namely, the unit vectors. We shall see that a formula just
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like (32) is valid if instead of the x; we use coordinates of £ relative
to an arbitrary orthonormal basis

&Yy 00y By
of ¥.{®). The matrix M having a; as its sth eolumn, i =1, ..., n
iz orthogonal: M'M =1, If
(33) ta=col (@, ..., a0, #a=col (b, ..., b,
we have
E=M£a: 7?=M7?ﬂy )

Ey = M Mna = Eaay O\

(34) g = b+ - 4 aubs A -

This fermula for the inner produ('t of £ and  has the same appte&rance
as the defining formula in which we used coordinates 1e1.rt1ve ‘to the
unit vectors, .w\‘ _

Hence we conclude that in computing the innck product of two
veetors of V.(®) we may use coordinates relative’to an arbitrary.
orthonormal basis. Thus, vectors » and £ \\11511 ‘evordinates (33) are
orthogonal if and only if their inner produsﬁ (B4) ig Z€T0. Also; the
length of £ is

(af+ -~ 1 “2)5
By virtue of these properties the ‘othonormal bases of V.(6t} effec-
tively generalize the conecept @f re(,tangular coordinate systems in
real space of two and th.ree d}munsmns

Lesnia 10-1. Lt al,\\ , o be any orthonormal basis of Va(®),

relative fo which a Zmea'r transformation T s represented by ¢ mairiz

A, Then T s ar!\hogonal if and only if A is orthogonal.

Tet &, = (JO'L\(@,I, ..., ). The vector T(¢) has coordinates A&,
which, by theohservations above, may be used in computing the
length-squdred of T(§):

CHNeN T@E)T(E) = £eA' Al
Nowdf 4 is orthogonal, A’4 = I so that
(36) T TE = bk
Thus 7 preserves lengths, and this is the defining property of an
orthogonal transformation, Conversely, if T'is orthogonal both (36)
and (35) are valid and
(@, ..., a)A'dcol (@, ..., &) =a+ - +or
for all scalars ay, . .., @, Then by Theorem 5-3, A’A =L
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THeorEM 10-8. Let T be an orthogonal transformation of V.i&],
n=2o0r 3. Then there is a rectangular coordinate system such that
T s either a rotation of coordinate axes, a reflection tn a coordinate
plane or axis, or & succession of two such mappings.

First, let » be arbitrary. The matrix 4 representing 7 rvelative
to any orthonormal basis is orthogonal, hence (Theorem 9-24) its
characteristic roots have absolute value equal to unity. Each real
root then is 1 or —1, and the imaginary roots are pairs cos ¢ = ¢ sir{?
Since an orthogonal matrix is real and normal, Thoorem 9-27 apq\iwc,
so that 4 is orthogonally similar to a matrix of the type

B=diag (-1, I, 0, ..., Cw), O
o [eost; —sing] ) AN _
Ci= [sin {;  cos 3;:| ,W}(g =L

If ¢ > 1, 2 X 2 blocks taken from —7/, may be gegza:rded as follows:

|: ] [COST —%Q:}]
0 -1 sin o \NCoS 7

Sinec each such block may be rogarded. %5 8 (', it may be assumed
hercafter that either —7, is absent, entlrely or that it is 1 X L. The
matrix B is clearly a product O

~

(37) B=EDy Dy =D, -+ D,

where E is either 7, or.‘olgamable from [, by changing the first
diagonal element 1o —1\&nd D; is obtainable from T, by substituting
C;fora2x?2 dlag.,ona.] block in & suitable position, the same position
as that occupiedh§C; as a block in B.

The sumlanty ‘of B and A implies that B represents the given
transformation T relative to a new basis B1, ..., 8. Since B s
orthogomﬁ} similar to A, the new basis, like the old, is orthonormal.
(Why'i} “In terms of coordinates relative to this new basis T is
it L}~by the formula

T(t)g = Bty = Dy, -+ DiFEs.
If £; and S are the transformations

Ri(f)ﬁ = D:FEﬂ: (J = ]-! vy ?‘?’.‘,)
S(£)s = Ets,
we see that T is accomplished by performing in succession S, I,
. R
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When n = 3, B is either E or ED, where

1 0 0 £1 0 0
D=0 cost —sint|, E= 01 0f
0 sinf cos{ 0 01

If the new orthonormal basis is interpreted as an zyz rectangular co-
ordinate system, EF represents either the identity transformation
{carrving each point into itself) or the transformation carrying each

polnt {x, 3, 2) into (', ¥, 27), where N\
p) o
g=—-x y=vy =z 0
This i3 a rveflection in the yz plane. Finally, D represgngs the
transiormation N
¥ =z, A

L
y =ycosf—zsind, “\

Z =ysnt+zcosl,

which ig a rotation about the z axis. The casésr= 2 may be analyzed

similarly. Theorem 10-9 is commonly stzat}h without any restriction

on 7, rotations and reflections in V”(G@):being suitably defined.
ExBrorsis

1. Consider the locus in{feg! two-dimensional space of the equation
X'AX = 1, where X’AX jda)quadratic form over ® and X = (2, y). let
r amndd & denote the chzi}a}t(}ristic roots of the real, symmetric madrix 4.
Show that the locus & 3n ellipse if both r and s are positive, a hyp'erbola if
they have oppositc%si'gﬁs, and nonexistent if both » and & are negative; also,
that there is nordgeds if both roots are gero or i one root i zero and the other
negative; E{ﬁ‘t}mt the locus is two straight lines if one root 1s zero and one
1§ positivg\M ) . . .

2. Re%'cl‘ring to Fixercise 1, show that the locus is nonexistent if the index
of 4 :i%’;ééro, and existent if the index is positive. In the latter case show thgt

e oous is a nondegenerate conic if A is nonsingular, and a degenerate conie
if A is singular. i _

3. Let T be an orthogonal transformation of V(@) with matrix repre-
sentation A, Show that T is a reflection in a line if |4} = =1, and & rotation
ifld] = 1.

4. State and prove the analogue of Lemma 1
tions of V,.(€).

5. Define rotations and reflections in Vs
for arbitrary n.

(-1 for unitary transforma-

(®) so that Theorem 10-9 is valid
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10-8 Operations on linear transformations. In Section 10-7 we
considered performing successively a number of reflections and rota-
tions. Suppose now that S and 7 are any two linear transformations
of V..(F). If we perform first. T, then S, that is,

§— T = S[TE)] = ST,

cach vector £ is mapped into a veetor which is commonly indicated
as 8T(f). The correspondence

38) £ ST() o
may be rogarded as a single entity, It is actually a lincar t-raﬁéftit'ma-
tion of V. (5): O
ST{eikr + ) = S[T{(e:ér + cofe)] " N
= SleT (&) + T (& ){

= CIS[T(EI) oS (2)]

= 63T(&) + &S{&).
Thus (38) is a linear transformation. 1<i§f3\ca-lled the produet of 8
and T. PN,

Suppese that S and T are replesenfcd by matrices Sy and T,
respectivelx, relative to some fixeds basig. Then T(£) has coordinates
Tk, 50 that 4 = ST(E) may be ea'lculated in terms of coordinates as
follows:

(39) ”\ Na = SDTUEQ

This shows that them\atrlx representing ST is SoTh.
The sum 8 + T(0f linear transformations S and 7T is defined to be
the corre spondeno&

@) £— 8 + 1)
The su \S(E) + T{£) may be indicated as
R\ (S + k.

-\ w4
\The correspondence (40) is linear, since

Sleids + exlz) + Tlede+ k)
= aS(&) + aS(E) + aT(t) + eT(E)
alS(E) + TE)] + eofS(k) + T'{E)]
= [(8+ D)+ el (S + Tk
In terms of coordinates » = (S + T)t may be calculated as follows:

(‘}-l) Nee = Sﬂgrx + TOSG = (Sﬂ + Tﬂ)ga-
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This shows that the lincar transformation 84 7' is represented by
So + 1.

Bealar multiplication also arises for lincar transformations. If £
is a scalar, the correspondence '

42 E— kE

Is casily seen to be a linear transformation-S8;. Moreover, rclative
to any bhasis whatsoever, 8, is represented by the: matrix S, = &7,
By the fuet proved in (39) the product S,T is represented by &7 - 7\
= k¥ These ideas motivate the following definition of the produch
of a scalar & by a linear transformation T': The product AT is d¢fingd
1o be the product ST, where S is the linear transformatiby (42).
Thus the transformation kT is efected on a given vectgtsg by [irst
finding 7'(¢), then multiplying this result by the scaladk. As we
have seen, 2T is represented by the matrix kT N

In summary, the set L.(5) of all linear transfgmmations on V,(%)
i subject 1o three operations called additiefy multiplication, and
sealar multiplication, The set 5, of a.ll,nx\fﬁ matrices. over ¥ is
subject to three like-named operations »Once a basis of V.(F) is
selected, each member S of L.(¥) cortesponds to a unigue member
Se of §,, S, being the matrix repfesenting S relative to the chosen
busis; cach matrix Sy in Fy repres‘fgilté a unique S in L.(F}. Morcover,
the matrices corresponding g0\the linear transformations 8T, S+ T,
and 7" are, r{:sp(;activcl_yz,i“',\

Y \B‘nTu, 8o+ T, kT,

where &, and 7y gf¢*the matrices corresponding to S and 7. Thus
compuiations ifivelving linear transformations may be carrigd out
effectively pallisc of the corresponding matrices, and conversely
Cf’mpu‘titi:‘k{'S'involving matrices may be interpreted by. means of
linear t-fé,nsformal-ions. For these reasons the study of L.(® on
th.(:\oh"é ‘hand and of &, on the other amount fo Two ways of loo]I(mg
ﬂﬂ\ﬂ}(; same subject. While more abstract, the linear tra.nsforr?mbmns
can in some ways be handled with greater facility than iheir more
conerete counterparts, matrices. The reader who 18 interested in
this approach may wish to read References 9 and 14.
BExpRrCIsES

1. Prove that (42) is a linear transformation and’ that it is represented

relative to uny basis by the matrix B
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2. What is the meaning of (&8 4 -+ £8.)¢, where £ is a vector, the
8; are lincar transformations, and the k; are scalars®

3. Let a matrix 4 represent a linear transformation 7. Prove that A Is
nonsingular if and only if T iz one-to-one (that is, maps distinet vectors into
distinet vectors).

10-9 Summary. In the main, this book has been devoted to the
study of seven R8T relations on certain classes of matrices. These
refations and some of the vital facts pertaining thereto may hegwmn-
marized as follows,

I. Equivalence over §: B = PAQ. RAY,
P and @ nonsingular. O
A and B rectangular. N

Arbitrary scalar field . "
IT. Equivalence over F[z]: B = PAQ. O
P and @ nonsingular matrices over 3{x] havmg determinants

in &, hence having inverses with eleﬁenth n Flzl.

4 and B rectangular, \
F is an arbitrary field, and thc scalars are polynomials in
one variable over . ».;

II1. Similarity: B = P—lAPv
P nonsingular. %\
Arbitrary scalapeld &,
IV. Congruence: B AP’AP
P nonsinguiar:
Resultsiebtained only when scalar ficld ¥ obeys 14 1 = 0,
and fug'.\”['}hé major results only when & = R,
V. He:@itian congruence: B = P/AP.
Pnonsingular.
'\\Fleld of scalars is the field € of all complex numbers.
A I, “Orthogonal similarity: B = P-14P.

O pi-p
\ ) Field of sealars is the field ® of all real numbers.
VII. Unitary similarity: B = P14 P,
Pl= P,

Field of sealars is @,

All of the relations except the first two require the related matrices
A and B to be square. Otherwise the products defining the relations
are impossible.

For each of the seven relations there are two major problems:
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(1) obtaining a set of canonical matrices; (2) finding a necessary and
suflicient, eondition for two matrices to obey the specified relation
(i.e., to be similar or equivalent or congruent, ete.). These problems
were solved in full generality for the first three relations, but only
for restricted classes of matrices in the last four relations.

The results for similarity (III) are interesting in that several
cancnical sets are available. One eanonieal matrix similar to a given
matrix A is the direct sum B of the hypercompanion matrices of the,
clementary divisors of 4. If the matrix 4 is fixed but the scalar
field is progressively enlarged, this cancnical matrix B changes; if
the ficld is suitably cnlarged, B then becomes a classical ¢anonical
mafrix, S &N

Notable results for congruence (IV) were abtaine\d Ooly when at-
tention was confined to the class of symmetric mattices over the real
number field, or the class of skew matrices ovet™a general field
which 141 5= 0. Both of the major probleﬁﬂ above were solved
for those cases. The theory of Hermitigneongruence (V) was worked
out primarily for the case of Herm.itia:!‘}. Fatrices, the resuits being
parallel to those for congrucnce of',ljeél symmetric matrices. .

Orthogonal matrices, and real'symmetric and real skew matrices
are gspecial eases of real norma,‘lfniatrices. The two major probl'ems
were nolved for the orthogomal similarity (VI) of real normal Tnatnces.
The complex analogue ig eoncerned with the unitarj?r similarity (VI1I)
of general normal matiees; for this case the two major problen.:ts were
solved, thereby cobering the special cases of matrices which are
Hermitian or guitary. .

Having thus-feviewed the seven major relations from the view-
points of_(finitions, the generality of the scalar system, and the
particuléetlasses of matrices for which canonical scts were developud,
we shall now review the concrete situations in which _the various
[’ela,t?on& appear. Nonsingular linear substitutions in. b‘ilmeacr forms,
Quadratic forms, and Hermitian forms give }*ise to eciulvalence, con-
gruence, and Hermitian congruence, respectively. For the last F\xvo
types of form, if the substitution is required to be1lengt.h-preserw'f11g,
one is led to orthogonal and unitary gimilarity, These t.wo relations
play roles also in the simultaneous reduction of a pair f’f .forfns.
Equivalence over Flz] is primarily a tool for the study of §1mﬂarlty.
The latter relation occurs in the determination of al_l matrices repre-
senting & common linear transformation, and a-lsolm concrete form
in connection with solutions of systems of differential equations.
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subject.
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adjoint, 75 -
alitrnate matrix, 95
associafive law, 7

basiz, 28
belong to, 18 -
bilinear form, 65
matrix of, 66
rank of, 66 & _
bieck multiplication, 15

canonical set, b8
Cuyley-Hamilton theorem, 136
characteristic

equation, 136

function, 136

matriz, 136

palynormial, 136

roots, 166, 169

vector, 170 N
class, 18 ' -
clagsical canonieal form; 1638
closed, 18, 25 ¢ &E\J

y Lt \
cofuctor, 78 p \
colutnn \¥

operations, 49 \ /
rank, 49 N
space, 46 Q7
commutative law, 7
conup,g’fe’é with, 7
egmpurion matrix, 148
cﬁmﬁonents, 24

coordinates, 1, 24, 214
Cramer’s rule, 83-

decomposable matrix, 154
degree of a polynomial, 109
degree of s matric polynomial, 131
determinant, 63 ~

diagonable matrix, 177 A o
diagonal R
~ elements, 6 O
mafrix, 9 - N
of a matrix, 8 /A °

dimension, 32 N
dircet sum ’

of matriced 16

of subspates, 226 (Ex. 6)
distribtitive Jaw, 10
divides) 109
ditision algorithm, 110, 134

Xdivisor of zero, 20

cigenvalues, 169
eigenvector, 170
elementary
column operations, 49
divisors, 157 '
matrix, 40, 123
operations, 51, 123
row operations, 38
elements, 1
entries, 1
equivalent
matrices, 51, 123
gysterns of equations, 36, 139

congruent automorphs, 87 (Ex. 7, expansion of 2 determinant, 77

103
congruent matrices, 86
conjugate, 97
conjunctive matrices, 99
constant polynomials, 109
contained in, 18
eontains, 18

factor, 109
factorization, 110

trivial, 110
field, 17,

greatest eommon divisor, 113, 120
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Hermitely ecngruent, 99
Hermitiun form, 88
Hermitian matrix, 97
homogeneons gystem, 47
hypercompanion matrix, 162

idempotent matrix, 147, 160 (Tx. 3),
224 (Ex. 2)

identity matrix, ¢
image, 218
indecomposable matrix, 154
index, 92, 100
inner product, 178, 188
invariant factors, 128
inverse, 40

left, 58

right, 58
irreducible polynomial, 110
iteration method, 207

leading coefficient, 109

least common multiple, 118

length, 178, 188 . ¢\J

lie in, 18 N\

linear combina.tigﬁ,:,il, 26

linear transfoPmgation, 179, 189, 218
linearly depgﬁdént, 27

linearly ifidependent, 27

map';.'?’ﬁ
mdtnic polynomial, 131

“\“degree of, 131

leading coefficient of, 131
proper, 132

_ matrix, 1

complex, 18

real, 18

rectangular, 1

square, 5
matrix repregentation, 220
maxima snd minima, 107

INDEX

member, 18

minimum funetion, 67
minimum polynomial, 67
minor, 77

monie polynomial, 109
multiple, 118
multiplicity, 121, 169

negative definite, 94 «~ N\
negative semidefinite, 94 |
nilpotent matrix, 147, 154«{]5};. 2
nonderogatory matrjx:,“]};l?
nonsingular, 40 4
norm of a complex*namber, 210
normal matpigh102
normal uhitary basis, 189
normal weetor, 178, 189
n-tuplas, 23
npf[ Epace, b3

. nullity, 53

join, 44 R
Jordan form, 163 . '“o.r der, 5
- tatent roots, 169 _ay " ~.orthogonal

complement, 225

congrucnee, 180

equivalence, 130

matrix, 179

similarity, 180

transformation, 179
- Aectors, 178, 189
orthonormal basis, 180
over¥, 18

parallelogram law, 23
permutation, 69
polynomial, 108
polynomial domain, 108
positive definite

form, 88

matrix, 88, 101
positive semidefinite

form, 88

matrix, 88
prime fuctorization, 116
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principal singular, 40
idempotents, 176 skew matrix, 95
minor, 94 skew-Hermitian matrix, 101
subdeterminant, 94 skew-gymmetric matrix, 95
submatrix, 94 Smith’s canonical matrices, 128
product of linear tra,nsformatlons gpan, 26
230 spectral decomposition, 177
product of matrices, 3 specirum, 177
rrojection, 3% (Fx, 8), 225 4 : subclass, 18 £\
proper orthogonal matrix, 200 =~ subdeterminant, 72 N
proper value, 169 : subfield, 18 )
proper vector, 170 submatrix, 13 O
: subsct, 18 A
quadratic form, 84 — A\ )
matrix of, 85 of linear tmnﬂa&ﬁvﬁations, 230
quantitics, 1 of matrigés,\L0
q'{l(’}i.ib"ﬂt, 135 of subs deps, a4

symmettie Taw, 52

rank, 56 symétfi’c matrix, 84

rational eanonical set, 161, 162 (foot-
note) '

rational expression, 122

rectangular coordinate system, 21’6»

.‘trf:ée, 13 (Ex. 14) -
*translorm, 218
transitive law, 52

¢

reflection, 217 N\

N transpose, 6
reflexive ]aw, 532 £ transposition, 70
relation, 51 “~\ - ,

{ ' i trix, 174
relatively prime, 11 5\\ triangular matrix,

remainder, 132, ]35
ring, 20
roots of a pnlyﬁthmal 121
row equivalént, 42
« Tow rark (@d
. Tow Spa}c, 44
Rg’\lf;elation, 52

unit vectors, 28
unitary
mafrix, 189
similarity, 188
transformation, 189

value of a form, 87

g@d]w, 9 Vandermonde’s matrix, 78 (Ex. 2},
matrix, 9 . 80 {(Fx.8)
multiplieation, 9, 24, 231 /vector, 24
procluct, 9, 24 ' _/ vector space, 24, 25 -

secular roots, 169

zet, 18 zero, 17

similar matrices, 143 matrix, 10 5

similarity invariants, 144 gubspace, 20

simple elementary divisor, 163 ./ vector, 24
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